分析 (1)方程:4x-4•2x+3=0即(2x)2-4•2x+3=0,因式分解為(2x-1)(2x-3)=0,即可解出.
(2)利用對(duì)數(shù)的運(yùn)算性質(zhì)及其lg2+lg5=1即可得出.
解答 解:(1)方程:4x-4•2x+3=0即(2x)2-4•2x+3=0,因式分解為(2x-1)(2x-3)=0,∴2x=1或2x=3,解得x=0或x=log23.
(2)原式=lg5(3lg2+3)+3lg22+$lg(\frac{1}{6}×0.06)$
=3lg2(lg5+lg2)+3lg5-2
=3(lg2+lg5)-2
=1.
點(diǎn)評(píng) 本題考查了指數(shù)與對(duì)數(shù)的運(yùn)算性質(zhì),考查了推理能力與計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ($\frac{2}{5}$,$\frac{2}{3}$) | B. | (-∞,$\frac{2}{5}$]∪($\frac{2}{3}$,+∞) | C. | [$\frac{2}{5}$,$\frac{2}{3}$) | D. | [$\frac{2}{5}$,$\frac{2}{3}$] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -$\frac{1}{7}$ | B. | $\frac{1}{7}$ | C. | $\frac{1}{2}$ | D. | $-\frac{1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2 | B. | 3 | C. | 4 | D. | 5 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 減函數(shù)且最大值是5 | B. | 增函數(shù)且最大值是-5 | ||
C. | 減函數(shù)且最大值是-5 | D. | 增函數(shù)且最小值是5 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $y={log_{\frac{1}{2}}}(x+1)$ | B. | $y={log_2}\sqrt{{x^2}-1}$ | C. | $y={log_2}\frac{1}{x}$ | D. | $y={log_{0.2}}(4-{x^2})$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com