11.“a=2”是“函數(shù)f(x)=x2-2ax-3在區(qū)間[2,+∞)上為增函數(shù)”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

分析 由函數(shù)f(x)=x2-2ax-3在區(qū)間[2,+∞)上為增函數(shù),可得a≤2,即可判斷出.

解答 解:由函數(shù)f(x)=x2-2ax-3在區(qū)間[2,+∞)上為增函數(shù),∴a≤2,
∴“a=2”是“函數(shù)f(x)=x2-2ax-3在區(qū)間[2,+∞)上為增函數(shù)”的充分不必要條件.
故選:A.

點(diǎn)評(píng) 本題考查了二次函數(shù)的單調(diào)性、充要條件的判定,考查了推理能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.$\frac{1}{1×2}+\frac{1}{2×3}+\frac{1}{3×4}+…+\frac{1}{2014×2015}$=$\frac{2014}{2015}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.已知函數(shù)f(x)的導(dǎo)函數(shù)為f′(x),且滿足f(x)=3x2+2xf′(2),則f′(4)=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.集合A={a2,a+1,-1},B={2a-1,|a-2|,3a2-4},A∩B={-1},則a的值是0或-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.設(shè)f(x)=$\frac{{x}^{2}-1}{{x}^{2}+1}$,則f(2)=$\frac{3}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.已知$f(\frac{2}{x}+1)=x+3$,則f(-1)=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知函數(shù)f(x)=$\frac{\sqrt{3-ax}}{a-1}$(a≠1且a≠0)
①當(dāng)a>1時(shí),判斷函數(shù)f(x)的單調(diào)性,并用定義法證明.
②若函數(shù)函數(shù)f(x)在區(qū)間(0,1]上是減函數(shù),試求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.已知f(x)=x+$\frac{9}{x}$+3,g(x)=-x2+6x,若存在正數(shù)m,n使得f(m)=g(n),則m+$\frac{1}{n}$=$\frac{10}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.已知函數(shù)f(x)滿足f(x+2)=2f(x),且當(dāng)x∈[0,2]時(shí),f(x)=-x2+2x,若函數(shù)g(x)=f(x)-a|x-1|在區(qū)間[0,4]上有4個(gè)零點(diǎn),則實(shí)數(shù)a的取值范圍是(0,8-4$\sqrt{3}$).

查看答案和解析>>

同步練習(xí)冊(cè)答案