10.已知全集U=R,集合A=$\left\{{x|y=\frac{1}{lnx}}\right\}$,B=$\left\{{x|y=\sqrt{-{x^2}+x}}\right\}$,則(∁UA)∩B=( 。
A.{0}B.{0,1}C.D.(0,1)

分析 先將集合A,B進行化簡,確定集合A,B的元素,然后利用補集和交集,進行交補運算.

解答 解:全集U=R,集合A=$\left\{{x|y=\frac{1}{lnx}}\right\}$=(0,1)∪(1,+∞),B=$\left\{{x|y=\sqrt{-{x^2}+x}}\right\}$=[0,1],
∴∁UA=(-∞,0]∪{1},
∴(∁UA)∩B={0,1},
故選:B.

點評 本題的考點是集合的交集和補集運算.先將集合進行化簡是解決本題的關(guān)鍵.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

20.設(shè)△ABC的內(nèi)角A,B,C的對邊分別為a,b,c,若$a=\sqrt{3},sinB=\frac{{\sqrt{3}}}{2},C=\frac{π}{6}$,則b=$\frac{3}{2}$或3.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.已知sinα=2cosα,則3cos2α-2sinαcosα+5sin2α=$\frac{19}{5}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

18.設(shè)f(x)=$\frac{1}{3}$x3+3x2+ax,若g(x)=$\frac{1}{{4}^{x}}$,對任意x1∈[$\frac{1}{2}$,1],存在x2∈[$\frac{1}{2}$,2],使得f′(x1)≤g(x2)成立,則實數(shù)a的取值范圍為(-∞,-$\frac{13}{2}$].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.已知拋物線x2=2py(p>0),過其焦點$F(0,\frac{p}{2})$的直線l與拋物線相交于A,B兩點,設(shè)A,B兩點的坐標分別為A(x1,y1),B(x2,y2).求證:
(1)x1•x2=-p2
(2)y1•y2=$\frac{p^2}{4}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

15.設(shè)數(shù)列{an}的前n項和為Sn,Sn=$\frac{{a}_{1}({3}^{n}-1)}{2}$(對n≥1恒成立)且a4=54,則an=$\frac{2}{3}•{3}^{n}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.不等式|x-1|<1的解集用區(qū)間表示為(0,2).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

19.頂點在原點,對稱軸是坐標軸,且過點(-1,2)的拋物線的標準方程為y2=-4x或x2=$\frac{1}{2}$y.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

20.已知$\overrightarrow{a}$=(2,1),$\overrightarrow$=(1,-2),則$\overrightarrow{a}$+$\overrightarrow$=(3,-1).

查看答案和解析>>

同步練習冊答案