20.設曲線C的參數(shù)方程為$\left\{\begin{array}{l}{x=1+cosθ}\\{y=sinθ}\end{array}\right.$(θ為參數(shù)),若以原點為極點,以x軸的正半軸為極軸建立直角坐標系,則曲線C的極坐標方程為ρ=2cosθ.

分析 用x,y表示出cosθ,sinθ,根據(jù)同角三角函數(shù)的關系消去θ得出直角坐標方程,再將x=ρcosθ,y=ρsinθ代入直角坐標方程得到極坐標方程.

解答 解:由$\left\{\begin{array}{l}{x=1+cosθ}\\{y=sinθ}\end{array}\right.$得cosθ=x-1,sinθ=y.
∵cos2θ+sin2θ=1,∴(x-1)2+y2=1.即x2+y2=2x.
∵x2+y22,x=ρcosθ,∴ρ2=2ρcosθ,即ρ=2cosθ.
故答案為ρ=2cosθ.

點評 問題考查了參數(shù)方程與普通的互化,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

8.已知函數(shù)f(x)=$\left\{\begin{array}{l}{lo{g}_{3}x,x>0}\\{{x}^{2},x≤0}\end{array}\right.$,若f(-1)=2f(a),則a的值等于( 。
A.$\sqrt{3}$或-$\frac{\sqrt{2}}{2}$B.$\sqrt{3}$C.-$\frac{\sqrt{2}}{2}$D.±$\frac{\sqrt{2}}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

9.過點(1,-2),且與兩坐標軸都相切的圓的方程是x-5)2+(y+5)2=25或(x-1)2+(y+1)2=1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.函數(shù)f(x)滿足x2f′(x)+2xf(x)=$\frac{{e}^{x}}{x}$(e為自然對數(shù)的底數(shù)),f(2)=$\frac{{e}^{2}}{8}$,判斷f(x)在(0,+∞)上的極值情況.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.如圖,橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率是$\frac{\sqrt{3}}{2}$,過點P(1,0)的動直線l與橢圓相交于A,B兩點,當直線l平行于y軸時,直線l被橢圓C截得的線段長為2$\sqrt{2}$.
(1)求橢圓C的方程;
(2)已知D為橢圓的左端點,問:是否存在直線l使得△ABD的面積為$\frac{10\sqrt{2}}{3}$?若不存在,說明理由,若存在,求出直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.已知函數(shù)f(x)=x-$\frac{1}{x}$-alnx.
(1)若f′(2+$\sqrt{3}$)=0,求函數(shù)f(x)的極大值點;
(2)若當x≥1時,f(x)≥0恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.已知動圓C位于拋物線x2=4y的內部(x2≤4y),且過該拋物線的頂點,則動圓C的周長的最大值是( 。
A.πB.C.D.16π

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.設函數(shù)$f(x)=4sin({ωx+\frac{π}{3}})({ω>0})$的最小正周期為π,設向量$\overrightarrow a=({-1,f(x)})$,$\overrightarrow b=({f({-x}),1})$,$g(x)=\overrightarrow a•\overrightarrow b$.
(1)求函數(shù)f(x)的遞增區(qū)間;
(2)求函數(shù)g(x)在區(qū)間$[{\frac{π}{8},\frac{π}{3}}]$上的最大值和最小值;
(3)若x∈[0,2016π],求滿足$\overrightarrow a⊥\overrightarrow b$的實數(shù)x的個數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.以下命題:
①若x≠1或y≠2,則x+y≠3;
②若空間向量$\overrightarrow{OA}$,$\overrightarrow{OB}$與空間中任一向量都不能組成空間的一組基底,則$\overrightarrow{OA}$與$\overrightarrow{OB}$共線;
③命題“?x∈R,使得x2+x+1<0”的否定是:“?x∈R,均有x2+x+1<0”;
④若A、B為兩個定點,K為正常數(shù),若|PA|+|PB|=K,則動點P的軌跡是橢圓;
⑤已知拋物線y2=2px,以過焦點的一條弦AB為直徑作圓,則此圓與準線相切.
其中真命題有( 。﹤.
A.1B.2C.3D.4

查看答案和解析>>

同步練習冊答案