20.中國(guó)古代名詞“芻童”原來(lái)是草堆的意思,古代用它作為長(zhǎng)方棱臺(tái)(上、下底面均為矩形的棱臺(tái))的專用術(shù)語(yǔ),關(guān)于“芻童”體積計(jì)算的描述,《九章算術(shù)》注曰:“倍上袤,下袤從之,亦倍下袤,上袤從之,各以其廣乘之,皆六而一.”其計(jì)算方法是:將上底面的長(zhǎng)乘二,與下底面的長(zhǎng)相加,再與上底面的寬相乘,將下底面的長(zhǎng)乘二,與上底面的長(zhǎng)相加,再與下底面的寬相乘,把這兩個(gè)數(shù)值相加,與高相乘,再取其六分之一,依此算法,現(xiàn)有上、下底面為相似矩形的棱臺(tái),相似比為$\frac{1}{2}$,高為3,其上底面的周長(zhǎng)為6,則該棱臺(tái)的體積的最大值為( 。
A.14B.56C.$\frac{63}{4}$D.63

分析 設(shè)上底面的長(zhǎng)為x,寬為y,則x+y=3,x>0,y>0,由此得到該棱臺(tái)的體積V=[(2x+2x)y+(4x+x)•2y]×$3×\frac{1}{6}$,利用基本不等式能求出該棱臺(tái)的體積的最大值.

解答 解:設(shè)上底面的長(zhǎng)為x,寬為y,則x+y=3,x>0,y>0,
∴該棱臺(tái)的體積V=[(2x+2x)y+(4x+x)•2y]×$3×\frac{1}{6}$=7xy≤7×($\frac{x+y}{2}$)2=7×$\frac{9}{4}$=$\frac{63}{4}$.
∴該棱臺(tái)的體積的最大值為$\frac{63}{4}$.
故選:C.

點(diǎn)評(píng) 本題考查棱臺(tái)的體積的最大值的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意函數(shù)性質(zhì)的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知點(diǎn)P在拋物線x2=y上運(yùn)動(dòng),過點(diǎn)P作y軸的垂線段PD,垂足為D.動(dòng)點(diǎn)M(x,y)滿足$\overrightarrow{DM}=2\overrightarrow{DP}$,設(shè)點(diǎn)M的軌跡為曲線C.
(Ⅰ)求曲線C的方程;
(Ⅱ)設(shè)直線l:y=-1,若經(jīng)過點(diǎn)F(0,1)的直線與曲線C相交于A、B兩點(diǎn),過點(diǎn)A、B分別作直線l的垂線,垂足分別為A1、B1,試判斷直線A1F與B1F的位置關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.如圖程序框圖的算法思路源于我國(guó)古代數(shù)學(xué)名著《九章算術(shù)》中的“更相減損術(shù)”.執(zhí)行該程序框圖,若輸入的a,b分別為98,63,則輸出的a為(  )
A.0B.7C.14D.28

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.在三棱錐P-ABC中,PA⊥平面ABC,PA=2,AB=AC=3,又$cos∠BAC=-\frac{3}{5}$,則該三棱錐外接球的表面積為49π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.已知p:不等式x2+mx+1<0的解集為空集,q:函數(shù)y=4x2+4(m-1)x+3無(wú)極值,若“p或q”為真,“p且q”為假,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.現(xiàn)有編號(hào)為①②③④的四個(gè)判斷題,已知其中3正1誤,甲判斷①②③正確,乙判斷①③④正確,丙說:“我判斷為正確的題目均有且只有兩個(gè)跟甲、乙相同”,則在丙的判斷中,判斷為正確的題目一定含有②④.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.已知函數(shù)f(x)=$\frac{{x}^{2}}{{e}^{x}}$,若對(duì)任意的x1,x2∈[-1,2],恒有af(1)≥|f(x1)-f(x2)|成立,則實(shí)數(shù)a的取值范圍是[e2,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.在如圖所示的幾何體中,正方形ABEF所在的平面與正三角形ABC所在的平面互相垂直,CD∥BE,且BE=2CD,M是ED的中點(diǎn).
(1)求證:AD∥平面BFM;
(2)求二面角E-BM-F的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.已知最小正周期為2的函數(shù)y=f(x),當(dāng)x∈[-1,1]時(shí),f(x)=x2,則函數(shù)y=f(x)(x∈R)的圖象與y=|log5x|的圖象的交點(diǎn)個(gè)數(shù)為( 。
A.3B.4C.5D.6

查看答案和解析>>

同步練習(xí)冊(cè)答案