19.設(shè)兩直線l1:(3+m)x+4y=5-3m與l2:2x+(5+m)y=8,則“l(fā)1∥l2”是“m<-1”的( 。
A.充分而不必要條件B.必要而不充分條件
C.充要條件D.既不充分也不必要條件

分析 利用兩直線方程的一次項(xiàng)系數(shù)之比相等,但不等于常數(shù)項(xiàng)之比,求出實(shí)數(shù)m的值,再根據(jù)必要條件判斷即可.

解答 解:∵l1∥l2,
∴(3+m)(5+m)=4×2,
解得m=-1或m=-7,
當(dāng)m=-1時,l1∥l2重合,
故m=-7,
∴m=-7是m<-1的充分不必要條件.
故選:A.

點(diǎn)評 本題考查了兩條平行的充要條件、簡易邏輯的判定,考查了推理能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知關(guān)于x的不等式ax+b>0的解集為(-∞,-$\frac{1}{2}$),則關(guān)于x的不等式bx2-a>0的解集為(-$\sqrt{2}$,$\sqrt{2}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.若m是1和4的等比中項(xiàng),則圓錐曲線${x^2}+\frac{y^2}{m}=1$的離心率為(  )
A.$\frac{{\sqrt{2}}}{2}$B.$\frac{1}{2}$或3C.$\frac{{\sqrt{2}}}{2}$或3D.$\frac{{\sqrt{2}}}{2}$或$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.若條件p:|x+1|≤4,條件q:2<x<3,則?q是?p的必要不充分條件條件(填“充分不必要”、“必要不充分”、“充要”或“既不充分又不必要”).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.下列函數(shù)中,既是偶函數(shù)又在區(qū)間(0,+∞)上單調(diào)遞增的是(  )
A.$y=\frac{1}{x}$B.y=e-xC.y=lg|x|D.y=-x2+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.若一球的半徑為1,其內(nèi)接一圓柱,則圓柱的側(cè)面積最大為:2π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知全集U=R,集合A={x|x2-2x-3>0},B={x|2<x<4},則集合(∁UB)∩A=(  )
A.[-1,4]B.(-∞,2)∪(2,3)C.[2,3)D.(-∞,-1)∪[4,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.設(shè)全集S={ a、b、c、d、e},M={ a、c、d},N={ b、d、e},那么(∁SM )∩(∁SN )等于( 。
A.B.v00ugceC.{ a、c }D.{ b、e}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知變量x,y滿足約束條件$\left\{{\begin{array}{l}{x+y≥1}\\{3x+y≤3}\\{x≥0}\end{array}}\right.$,則目標(biāo)函數(shù)z=2x+y的最小值是(  )
A.4B.3C.2D.1

查看答案和解析>>

同步練習(xí)冊答案