分析 (1)由中位線定理可得OM∥BE,故而EB∥平面MOC;
(2)由等腰三角形三線合一可得OC⊥AB,由平面EAB⊥平面ABC可得OC⊥平面EAB,故而平面MOC⊥平面EAB;
(3)連結(jié)OE,則OE為棱錐的高,利用等邊三角形的性質(zhì)求出OE,代入體積計算.
解答 證明:(1)證明:∵O,M分別為AB,EA的中點,∴OM∥BE,
又∵EB?平面MOC,OM?平面MOC,
∴EB∥平面MOC.
(2)∵AC=BC,O 為AB中點,∴OC⊥AB,
又∵平面EAB⊥平面ABC,平面EAB∩平面ABC=AB,
∴OC⊥平面EAB,又∵OC?平面MOC,
∴平面MOC⊥平面 EAB.
(3)連結(jié)OE,則OE⊥AB,
又∵平面EAB⊥平面ABC,平面EAB∩平面ABC=AB,OE?平面EAB,
∴OE⊥平面ABC.
∵AC⊥BC,AC=BC=$\sqrt{2}$,∴AB=2,
∵三角形EAB為等邊三角形,∴OE=$\sqrt{3}$.
∴三棱錐E-ABC的體積V=$\frac{1}{3}{S}_{△ABC}$•EO=$\frac{1}{3}×\frac{1}{2}×\sqrt{2}×\sqrt{2}×\sqrt{3}$=$\frac{\sqrt{3}}{3}$.
點評 本題考查了線面平行,線面垂直的判定,面面垂直的性質(zhì),棱錐的體積計算,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2 | B. | 4 | C. | $\frac{5}{2}\sqrt{2}$ | D. | $\frac{3}{2}\sqrt{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
組數(shù) | 分組 | 低碳族 的人數(shù) | 占本組 的頻率 |
1 | [25,30) | 120 | 0.6 |
2 | [30,35) | 195 | P |
3 | [35,40) | 100 | 0.5 |
4 | [40,45) | a | 0.4 |
5 | [45,50) | 30 | 0.3 |
6 | [50,55) | 15 | 0.3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 有2個 | B. | 有4個 | C. | 不一定存在 | D. | 一定不存在 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | m=3,n=8 | B. | m=4,n=7 | C. | m=5,n=6 | D. | m=6,n=5 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 線段CD的中點 | B. | 線段CD靠近C的四等分點 | ||
C. | 重心 | D. | 線段CD靠近C的三等分點 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com