分析 (1)利用偶函數(shù)的性質(zhì)、對(duì)數(shù)的運(yùn)算性質(zhì)即可得出;
(2)由題意知方程log9(9x+1)-$\frac{1}{2}$x=$\frac{1}{2}$x+b有實(shí)數(shù)根,即方程log9(9x+1)-x=b有解.令g(x)=log9(9x+1)-x,則函數(shù)y=g(x)的圖象與直線(xiàn)y=b有交點(diǎn).再利用函數(shù)的單調(diào)性即可得出.
(3)由題意知方程${3}^{x}+\frac{1}{{3}^{x}}$=a•3x-$\frac{4}{3}a$有且只有一個(gè)實(shí)數(shù)根.令3x=t>0,則關(guān)于t的方程(a-1)t2-$\frac{4}{3}at$-1=0,(記為(*))有且只有一個(gè)正根.對(duì)a與△分類(lèi)討論即可得出.
解答 解:(1)∵y=f(x)為偶函數(shù),∴?x∈R,則f(-x)=f(x),
即 $lo{g}_{9}({9}^{-x}+1)$-kx=log9(9x+1)+kx(k∈R),對(duì)于?x∈R恒成立.
于是2kx=$lo{g}_{9}({9}^{-x}+1)$-log9(9x+1)=$lo{g}_{9}\frac{{9}^{x}+1}{{9}^{x}}$-$lo{g}_{9}({9}^{x}+1)$=-x恒成立,
而x不恒為零,∴k=-$\frac{1}{2}$.
(2)由題意知方程log9(9x+1)-$\frac{1}{2}$x=$\frac{1}{2}$x+b有實(shí)數(shù)根,
即方程log9(9x+1)-x=b有解.
令g(x)=log9(9x+1)-x,則函數(shù)y=g(x)的圖象與直線(xiàn)y=b有交點(diǎn).
∵g(x)=$lo{g}_{9}\frac{{9}^{x}+1}{{9}^{x}}$=$lo{g}_{9}(1+\frac{1}{{9}^{x}})$,
任取x1、x2∈R,且x1<x2,則$0<{9}^{{x}_{1}}<{9}^{{x}_{2}}$,從而$\frac{1}{{9}^{{x}_{2}}}<\frac{1}{{9}^{{x}_{1}}}$.
于是$lo{g}_{9}(1+\frac{1}{{9}^{{x}_{1}}})$>$lo{g}_{9}(1+\frac{1}{{9}^{{x}_{2}}})$,即g(x1)>g(x2),
∴g(x)在R上是單調(diào)減函數(shù).
∵$1+\frac{1}{{9}^{x}}$>1,
∴g(x)=$lo{g}_{9}(1+\frac{1}{{9}^{x}})$>0.
∴b的取值范圍是(0,+∞).
(3)由題意知方程${3}^{x}+\frac{1}{{3}^{x}}$=a•3x-$\frac{4}{3}a$有且只有一個(gè)實(shí)數(shù)根.
令3x=t>0,則關(guān)于t的方程(a-1)t2-$\frac{4}{3}at$-1=0,(記為(*))有且只有一個(gè)正根.
若a=1,則t=-$\frac{3}{4}$,不合,舍去;
若a≠1,則方程(*)的兩根異號(hào)或有兩相等正跟.
由△=0,可得a=$\frac{3}{4}$或-3;但a=$\frac{3}{4}$⇒t=-$\frac{1}{2}$,不合,舍去;而a=-3⇒t=$\frac{1}{2}$;
方程(*)的兩根異號(hào)?(a-1)(-1)<0?a>1.
綜上所述,實(shí)數(shù)a的取值范圍是{-3}∪(1,+∞).
點(diǎn)評(píng) 本題考查了函數(shù)的性質(zhì)、不等式的解法、簡(jiǎn)易邏輯的判定方法,考查了分類(lèi)討論、推理能力與計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (0,$\frac{\sqrt{2}}{2}$] | B. | [$\frac{\sqrt{2}}{2}$,$\frac{\sqrt{5}}{3}$] | C. | [$\frac{2}{3}$,$\frac{\sqrt{5}}{3}$] | D. | [$\frac{\sqrt{5}}{3}$,1) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | {2} | B. | {3} | C. | {2,3} | D. | {1,2,4} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $(\frac{ln3}{3},\frac{1}{e})$ | B. | $(\frac{ln3}{9},\frac{1}{3e})$ | C. | $(\frac{ln2}{8},\frac{1}{4e})$ | D. | $(\frac{ln2}{16},\frac{ln2}{2})$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{2\sqrt{3}}{3}$ | B. | $\frac{2\sqrt{6}}{3}$ | C. | $\sqrt{3}$ | D. | $\frac{\sqrt{21}}{3}$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com