5.已知復(fù)數(shù)z=$\frac{2+i}{i^3}$,z的共軛復(fù)數(shù)是$\overline{z}$,則$\overline{z}$對(duì)應(yīng)的點(diǎn)位于復(fù)平面內(nèi)的( 。
A.第一象限B.第二象限C.第三象限D.第四象限

分析 利用復(fù)數(shù)的運(yùn)算法則、共軛復(fù)數(shù)的定義、幾何意義即可得出.

解答 解:復(fù)數(shù)z=$\frac{2+i}{i^3}$=$\frac{2+i}{-i}$=$\frac{i(2+i)}{-i•i}$=2i-1,z的共軛復(fù)數(shù)是$\overline{z}$=-1-2i,則$\overline{z}$對(duì)應(yīng)的點(diǎn)(-1,-2)位于復(fù)平面內(nèi)的第三象限,
故選:C.

點(diǎn)評(píng) 本題考查了復(fù)數(shù)的運(yùn)算法則、共軛復(fù)數(shù)的定義、幾何意義,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.設(shè)a1,a2,…a2014都是正數(shù)且a1+a2+…+a2014=1.則$\frac{{{a}_{1}}^{2}}{2+{a}_{1}}$+$\frac{{{a}_{2}}^{2}}{2+{a}_{2}}$+…$\frac{{{a}_{2013}}^{2}}{2+{a}_{2013}}$+$\frac{{{a}_{2014}}^{2}}{2+{a}_{2014}}$的最小值為$\frac{1}{4029}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.如圖,正方形ABCD中,點(diǎn)E是DC的中點(diǎn),CF:FB=2:1,那么$\overrightarrow{EF}$=( 。
A.$\frac{1}{2}$$\overrightarrow{AB}$-$\frac{1}{3}$$\overrightarrow{AD}$B.$\frac{1}{4}$$\overrightarrow{AB}$+$\frac{1}{2}$$\overrightarrow{AD}$C.$\frac{1}{2}$$\overrightarrow{AB}$-$\frac{2}{3}$$\overrightarrow{AD}$D.$\frac{1}{3}$$\overrightarrow{AB}$+$\frac{1}{2}$$\overrightarrow{AD}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.橢圓$\frac{x^2}{4}+\frac{y^2}{a^2}=1$與雙曲線$\frac{{x}^{2}}{a}$-$\frac{{y}^{2}}{2}$=1有相同的焦點(diǎn),則a的值為( 。
A.1B.$\sqrt{2}$C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.已知函數(shù)f(x)=ax3+lg(x+$\sqrt{{x}^{2}+1}$)+1,若f(-1)=m,則f(1)用含有m的式子表示為2-m.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.在集合{1,2,3,4}中任取一個(gè)偶數(shù)a和一個(gè)奇數(shù)b構(gòu)成以原點(diǎn)為起點(diǎn)的向量$\overrightarrow{α}$=(a,b).從所有得到的以原點(diǎn)為起點(diǎn)的向量中任取兩個(gè)向量為鄰邊作平行四邊形.記所有作成的平行四邊形的個(gè)數(shù)為n,其中面積不超過(guò)4的平行四邊形的個(gè)數(shù)為m,則$\frac{m}{n}$=( 。
A.$\frac{4}{15}$B.$\frac{1}{3}$C.$\frac{2}{5}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.有一道解三角形的題目,因紙張破損有一個(gè)條件模糊不清,具體如下:“在△ABC中,已知$a=\sqrt{3}$,$B=\frac{π}{4}$,$A=\frac{π}{6}$(或$C=\frac{7π}{12}$),求b.”若破損處的條件為三角形的一個(gè)內(nèi)角的大小,且答案提示$b=\sqrt{6}$.試在橫線上將條件補(bǔ)充完整.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.在正方體ABCD-A1B1C1D1中,E為AB的中點(diǎn),F(xiàn)為A1A的中點(diǎn),則直線D1F與CE的位置關(guān)系是異面.(填平行、異面、相交三者之一)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.記[x]為不超過(guò)實(shí)數(shù)x的最大整數(shù),例如,{bn},n,[-0.3]=-1.設(shè)a為正整數(shù),數(shù)列{xn}滿足x1=a,${x_{n+1}}=[\frac{{{x_n}+[\frac{a}{x_n}]}}{2}](n∈{N^*})$,現(xiàn)有下列命題:
①當(dāng)a=5時(shí),數(shù)列{xn}的前3項(xiàng)依次為5,3,2;   ②對(duì)數(shù)列{xn}都存在正整數(shù)k,當(dāng)n≥k時(shí)總有xn=xk;
③當(dāng)n≥1時(shí),xn>$\sqrt{a}$-1;                   ④對(duì)某個(gè)正整數(shù)k,若xk+1≥xk,則${x_n}=[\sqrt{a}]$.
其中的真命題有①③④.(寫出所有真命題的編號(hào))

查看答案和解析>>

同步練習(xí)冊(cè)答案