4.以正方體ABCD-A1B1C1D1的頂點(diǎn)D為坐標(biāo)原點(diǎn)O,如圖建立空間直角坐標(biāo)系,則與$\overrightarrow{D{B_1}}$共線的向量的坐標(biāo)可以是( 。
A.(2,-2,2)B.(-2,-2,2)C.(-2,2,2)D.(-2,-2,-2)

分析 設(shè)正方體的棱長(zhǎng)為1,由圖形求出B1點(diǎn)的坐標(biāo),表示出$\overrightarrow{{DB}_{1}}$,從而求出與它共線的向量坐標(biāo).

解答 解:由圖形可知,B1點(diǎn)在正方體的上底面上,
設(shè)正方體的棱長(zhǎng)為1,
∴B1點(diǎn)的坐標(biāo)是(1,1,1),
則與$\overrightarrow{{DB}_{1}}$共線的向量的坐標(biāo)可以是λ(1,1,1);
λ=-2時(shí),為(-2,-2,-2).
故選:D.

點(diǎn)評(píng) 本題考查了共線向量與空間向量的坐標(biāo)表示的問(wèn)題,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.已知直線l:x+ay-1=0(a∈R)是圓C:x2+y2-4x-2y+1=0的對(duì)稱軸,過(guò)點(diǎn)A(4,a)作圓C的一條切線,切點(diǎn)為B,則|AB|=6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.參數(shù)方程$\left\{\begin{array}{l}{x=t-1}\\{y={t}^{2}+2}\end{array}\right.$(t∈R)表示的曲線是( 。
A.經(jīng)過(guò)坐標(biāo)原點(diǎn)B.與x軸相交,但與y軸不相交
C.與y軸相交,但與x軸不相交D.不經(jīng)過(guò)坐標(biāo)原點(diǎn),但與x軸、y軸相交

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.在下列命題中,真命題的個(gè)數(shù)是( 。
①若直線a,b和平面α滿足a∥α,b∥α,則a∥b.
②若直線l上有無(wú)數(shù)個(gè)點(diǎn)不在平面α內(nèi),則l∥α.
③若平面α⊥平面β,平面β⊥平面γ,則平面α∥平面γ.
④如果平面α不垂直于平面β,那么平面α內(nèi)一定不存在直線垂直于平面β.
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.已知向量$\overrightarrow a=(-1,0,2),\overrightarrow b=(1,1,0)$,且$\overrightarrow a+k\overrightarrow b與2\overrightarrow b-\overrightarrow a$相互垂直,則k值為( 。
A.$\frac{7}{5}$B.$\frac{3}{5}$C.$\frac{1}{5}$D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.已知函數(shù)f(x)=a|x-2|恒有f(f(x))<f(x),則實(shí)數(shù)a的取值范圍是(-∞,-1].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.如圖,在正方體ABCD-A1B1C1D1中,點(diǎn)M,N分別是面對(duì)角線A1B與B1D1的中點(diǎn),若$\overrightarrow{DA}$=$\overrightarrow{a}$,$\overrightarrow{DC}$=$\overrightarrow$,$\overrightarrow{D{D}_{1}}$=$\overrightarrow{c}$,則$\overrightarrow{MN}$=( 。
A.$\frac{1}{2}$($\overrightarrow{c}$+$\overrightarrow$-$\overrightarrow{a}$)B.$\frac{1}{2}$($\overrightarrow{a}$+$\overrightarrow$-$\overrightarrow{c}$)C.$\frac{1}{2}$($\overrightarrow{a}$-$\overrightarrow{c}$)D.$\frac{1}{2}$($\overrightarrow{c}$-$\overrightarrow{a}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.以等腰直角三角形的一條直角邊所在直線為旋轉(zhuǎn)軸,將該三角形旋轉(zhuǎn)一周,若等腰直角三角形的直角邊長(zhǎng)為1,則所得圓錐的側(cè)面積等于$\sqrt{2}π$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.已知數(shù)列{an}中,a3=3,an+1=an+2,則a2+a4=6,an=2n-3.

查看答案和解析>>

同步練習(xí)冊(cè)答案