A. | $\frac{16}{19}$ | B. | $\frac{16}{13}$ | C. | $\frac{13}{16}$ | D. | $\frac{8}{19}$ |
分析 由兩角差的正切公式可得tan(α+$\frac{π}{4}$)=tan[(α+β)-(β-$\frac{π}{4}$)]=$\frac{tan(α+β)-tan(β-\frac{π}{4})}{1+tan(α+β)tan(β-\frac{π}{4})}$,代入已知數(shù)據(jù)計算可得.
解答 解:∵tan(α+β)=$\frac{3}{4}$,tan(β-$\frac{π}{4}$)=$\frac{1}{4}$,
∴tan(α+$\frac{π}{4}$)=tan[(α+β)-(β-$\frac{π}{4}$)]
=$\frac{tan(α+β)-tan(β-\frac{π}{4})}{1+tan(α+β)tan(β-\frac{π}{4})}$=$\frac{\frac{3}{4}-\frac{1}{4}}{1+\frac{3}{4}×\frac{1}{4}}$=$\frac{8}{19}$
故選:D
點評 本題考查兩角和與差的正切,屬基礎題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 0 | B. | 1 | C. | 2 | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{3}{5}$ | B. | $\frac{\sqrt{2}}{2}$ | C. | $\frac{3}{5}$或$\frac{\sqrt{2}}{2}$ | D. | $\frac{\sqrt{6}}{2}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com