13.已知$\frac{1+tan(π+α)}{1+tan(2π-α)}$=-3,求cos2(π-α)+sin($\frac{3π}{2}$+α)•cos($\frac{π}{2}$+α)+2sin2(α-π)的值.

分析 由$\frac{1+tan(π+α)}{1+tan(2π-α)}$=-3運(yùn)用誘導(dǎo)公式化簡(jiǎn)求值可得tanα=2,由誘導(dǎo)公式,倍角公式,萬(wàn)能公式化簡(jiǎn)所求即可得解.

解答 解:∵$\frac{1+tan(π+α)}{1+tan(2π-α)}$=-3⇒$\frac{1+tanα}{1-tanα}$=-3⇒1+tanα=-3+3tanα⇒tanα=2,
∴cos2(π-α)+sin($\frac{3π}{2}$+α)•cos($\frac{π}{2}$+α)+2sin2(α-π)
=cos2α+cosα•sinα+2sin2α
=1+$\frac{1-cos2α}{2}$+$\frac{1}{2}$sin2α
=$\frac{3}{2}$+$\frac{1}{2}$(sin2α-cos2α)
=$\frac{3}{2}$+$\frac{1}{2}×\frac{2tanα}{1+ta{n}^{2}α}$-$\frac{1}{2}×\frac{1-ta{n}^{2}α}{1+ta{n}^{2}α}$
=$\frac{3}{2}$+$\frac{1}{2}×\frac{4}{5}$-$\frac{1}{2}×\frac{-3}{5}$
=$\frac{11}{5}$.

點(diǎn)評(píng) 本題主要考查了運(yùn)用誘導(dǎo)公式化簡(jiǎn)求值,同角三角函數(shù)基本關(guān)系的運(yùn)用,熟練使用相關(guān)公式是解題的關(guān)鍵,屬于基本知識(shí)的考查.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.b,c表示兩條不重合的直線,α,β表示兩個(gè)不重合的平面,下列命題中正確的是( 。
A.$\left.\begin{array}{l}{c∥α}\\{b?α}\end{array}\right\}$⇒c∥bB.$\left.\begin{array}{l}{c∥α}\\{α⊥β}\end{array}\right\}$⇒c⊥βC.$\left.\begin{array}{l}{c⊥α}\\{c⊥β}\end{array}\right\}$⇒α∥βD.$\left.\begin{array}{l}{b∥c}\\{c?α}\end{array}\right\}$⇒b∥α

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.已知函數(shù)f(x)滿足f(x+4)=f(x),且當(dāng)-1<x≤3時(shí),f(x)=$\left\{\begin{array}{l}{m\sqrt{1-{x}^{2}},x∈(-1,1]}\\{1-|x-2|,x∈(1,3]}\end{array}\right.$.其中m>0,若方程3f(x)-x=0恰好有5個(gè)根,則實(shí)數(shù)m的取值范圍是( 。
A.($\frac{\sqrt{15}}{3}$,$\sqrt{7}$)B.($\frac{\sqrt{15}}{3}$,$\frac{8}{3}$)C.($\frac{4}{3}$,$\sqrt{7}$)D.( $\frac{4}{3}$,$\frac{8}{3}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.設(shè)復(fù)數(shù)z1=-1+i,z2=$\frac{1}{2}$+$\frac{\sqrt{3}}{2}$i,則$\frac{{z}_{1}}{{z}_{2}}$在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)位于( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.設(shè)集合A={x|x2-6x+8<0},B={x|2<2x<8},則A∩B=( 。
A.{x|1<x<4}B.{x|1<x<3}C.{x|2<x<3}D.{x|3<x<4}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.已知向量$\overrightarrow{a}$,$\overrightarrow$滿足$\overrightarrow$=(1,$\sqrt{3}$),$\overrightarrow$•($\overrightarrow$-$\overrightarrow{a}$)=-3,則向量$\overrightarrow{a}$在$\overrightarrow$方向上的投影為$\frac{7}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.如圖,過(guò)拋物線x2=2py(p>0)的焦點(diǎn)F的直線l交拋物線于點(diǎn)A、B,交其準(zhǔn)線于點(diǎn)C,若|BC|=$\sqrt{2}$|BF|,且|AF|=4+2$\sqrt{2}$,則p=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.某幾何體的三視圖如圖所示,它的表面積為(  )
A.$\frac{π}{4}$B.$\frac{5π}{4}$C.$\frac{7π}{8}$D.π

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.已知點(diǎn)A的坐標(biāo)為(4$\sqrt{3}$,1),將OA繞坐標(biāo)原點(diǎn)O逆時(shí)針旋轉(zhuǎn)$\frac{π}{3}$至OB,則點(diǎn)B的縱坐標(biāo)為( 。
A.$\frac{{3\sqrt{3}}}{2}$B.$\frac{{5\sqrt{3}}}{2}$C.$\frac{11}{2}$D.$\frac{13}{2}$

查看答案和解析>>

同步練習(xí)冊(cè)答案