16.已知奇函數(shù)f(x)在(-∞,+∞)上是減函數(shù),且f(a2)+f(a-2)>0,求實(shí)數(shù)a的取值范圍.

分析 根據(jù)函數(shù)奇偶性和單調(diào)性的關(guān)系將不等式進(jìn)行轉(zhuǎn)化即可.

解答 解:∵奇函數(shù)f(x)在(-∞,+∞)上是減函數(shù),
∴f(a2)+f(a-2)>0得f(a2)>-f(a-2)=f(2-a),
即a2<2-a,即a2+a-2<0,
解得-2<a<1.

點(diǎn)評(píng) 本題主要考查不等式的求解,根據(jù)函數(shù)奇偶性和單調(diào)性之間的關(guān)系是解決本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知集合A={y|y=$\frac{a}{|a|}$+$\frac{|b|}$+$\frac{ab}{|ab|}$,ab≠0},含有三個(gè)元素的集合B可表示為{x,$\frac{y}{|x|}$,0},也可表示為{x-3,-$\frac{x}{|y|}$,3},求證:A$\frac{?}{≠}$B.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知集合M={x|x<-3或x>5},P={x|(x-a)(x-8)≤0}.
(1)求M∩P={x|5<x≤8}的充要條件;
(2)若x∈M是x∈P的一個(gè)必要但不充分條件,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.函數(shù)f(x)滿足條件:①定義域?yàn)镽,且對(duì)任意x∈R,f(x)<1;②對(duì)任意小于1的正實(shí)數(shù)a,存在x0,使f(x0)=f(-x0)>a,則f(x)可能是( 。
A.$\frac{|x|+1}{|x|-1}$B.$\frac{{x}^{2}}{{x}^{2}+1}$C.$\frac{x}{\sqrt{{x}^{2}+1}}$D.$\frac{x+1}{{x}^{2}+1}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知冪函數(shù)y=xm-2(m∈N)的圖象與x,y軸都無(wú)交點(diǎn),且關(guān)于y軸對(duì)稱,求m的值,并畫出它的圖象.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.函數(shù)f(x)=log2(-4x+5)的單調(diào)性是減函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知函數(shù)y=4x-2x+1+2,x∈[-1,2].
(1)設(shè)t=2x,求t的取值范圍;
(2)求函數(shù)的最值,并求出取得最值時(shí)對(duì)應(yīng)的x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.設(shè)一球的半徑為$tan\frac{7π}{6}$,則該球的表面積、體積分別為$\frac{4}{3}π$、$\frac{4\sqrt{3}}{27}π$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.在數(shù)列{an}中,a1=1,Sn為數(shù)列{an}的前n項(xiàng)和,當(dāng)n≥2時(shí),${a_n},{S_n},{S_n}-\frac{1}{2}$成等比數(shù)列,則an=$\left\{\begin{array}{l}{1,n=1}\\{\frac{1}{2n-1}-\frac{1}{2n-3},n≥2}\end{array}\right.$.

查看答案和解析>>

同步練習(xí)冊(cè)答案