14.函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$)的部分圖象如圖所示,若將y=f(x)的圖象向右平移m(m>0)個(gè)單位后,得到的圖象關(guān)于原點(diǎn)對(duì)稱,則m的最小值為(  )
A.$\frac{π}{24}$B.$\frac{π}{12}$C.$\frac{π}{6}$D.$\frac{π}{3}$

分析 利用y=Asin(ωx+φ)的圖象特征,求出函數(shù)y=Asin(ωx+φ)的解析式,再根據(jù)y=Asin(ωx+φ)的圖象變換規(guī)律及正弦函數(shù)的圖象和性質(zhì),求得m的最小值.

解答 解:由圖可知A=2,$\frac{3}{4}$T=$\frac{11π}{12}$-$\frac{π}{6}$,T=π,
∴?=2.
∵由圖可得點(diǎn)($\frac{π}{6}$,2)在函數(shù)圖象上,可得:2sin(2×$\frac{π}{6}$+φ)=2,解得:2×$\frac{π}{6}$+φ=2k$π+\frac{π}{2}$,k∈Z,
∴由|φ|<$\frac{π}{2}$,可得:φ=$\frac{π}{6}$,
∴f(x)=2sin(2x+$\frac{π}{6}$).
若將y=f(x)的圖象向右平移m(m>0)個(gè)單位后,得到的函數(shù)解析式為:y=2sin(2x-2m+$\frac{π}{6}$).
∵得到的圖象關(guān)于原點(diǎn)對(duì)稱,
∴-2m+$\frac{π}{6}$=$\frac{kπ}{2}$,k∈Z,解得:m=$\frac{π}{12}$-$\frac{kπ}{4}$,k∈Z,
∵m>0,
∴m的最小值為$\frac{π}{12}$.
故選:B.

點(diǎn)評(píng) 本題主要考查y=Asin(ωx+φ)的圖象變換規(guī)律,由函數(shù)y=Asin(ωx+φ)的部分圖象求解析式,正弦函數(shù)的圖象和性質(zhì),考查了數(shù)形結(jié)合思想,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.在數(shù)列{an}中,a1=1,${a_{n+1}}=2{a_n}+1(n∈{N^*})$,則數(shù)列$\left\{{\frac{1}{{1+{a_n}}}}\right\}$的各項(xiàng)和為2n-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.若集合$M=\{x|y={log_2}(-{x^2}+x+6)\}$,N={y|y=x2+1,x∈R},則集合M∩N=( 。
A.(-2,+∞)B.(-2,3)C.[1,3)D.R

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.下列各數(shù)中最小的數(shù)為( 。
A.101111(2)B.1210(3)C.112(8)D.69(12)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.將邊長(zhǎng)為2的正方形ABCD沿對(duì)角線BD折起,使平面ABD⊥平面CBD,則三棱錐C-ABD的外接球表面積為( 。
A.16πB.12πC.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.函數(shù)$y={(\frac{1}{2})^x}-1$在區(qū)間[-2,1]上的值域?yàn)閇-$\frac{1}{2}$,3].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.一個(gè)圓錐的底面半徑為2cm,高為6cm,在其中有一個(gè)高為3cm的內(nèi)接圓柱,則圓柱的側(cè)面積為( 。
A.2πcm2B.4πcm2C.6πcm2D.12πcm2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.計(jì)算下列各式的值
(1)$({-2{x^{\frac{1}{4}}}{y^-}^{\frac{1}{3}}})({3{x^{-\frac{1}{2}}}{y^{\frac{2}{3}}}})({-4{x^{\frac{1}{4}}}{y^{\frac{2}{3}}}})$;
(2)(log43+log83)(log32+log92).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.解關(guān)于x的不等式:ax2-x+1<0.

查看答案和解析>>

同步練習(xí)冊(cè)答案