6.已知等差數(shù)列{an}的首項(xiàng)a2=5,前4項(xiàng)和S4=28.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若bn=(-1)nan,求數(shù)列{bn}的前2n項(xiàng)和T2n

分析 (1)利用等差數(shù)列的通項(xiàng)公式及其前n項(xiàng)和公式即可得出.
(2)分組求和即可得出.

解答 解:(1)由已知條件:$\left\{\begin{array}{l}{a_2}={a_1}+d=5\\{S_4}=4{a_1}+\frac{4×3}{2}×d=28\end{array}\right.$,
∴$\left\{\begin{array}{l}{a_1}=1\\ d=4.\end{array}\right.$,
∴an=a1+(n-1)×d=4n-3.
(2)由(1)可得${b_n}={(-1)^n}{a_n}={(-1)^n}({4n-3})$,
T2n=-1+5-9+13-17+…+(8n-3)=4×n=4n.

點(diǎn)評(píng) 本題考查了等差數(shù)列的通項(xiàng)公式及其前n項(xiàng)和公式,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.從集合A={2,3,-4}中隨機(jī)選取一個(gè)數(shù)記為k,則函數(shù)y=kx為單調(diào)遞增的概率為( 。
A.$\frac{2}{9}$B.$\frac{1}{3}$C.$\frac{4}{9}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.設(shè)f(x)為一多項(xiàng)式,若(x+1)f(x)除以x2+x+1的余式為5x+3,則f(x)除以x2+x+1的余式為2x+5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知點(diǎn)A(0,-1),B(3,0),C(1,2),平面區(qū)域P是由所有滿足$\overrightarrow{AM}$=λ$\overrightarrow{AB}$+μ$\overrightarrow{AC}$(2<λ≤m,2<μ≤n)的點(diǎn)M組成的區(qū)域,若區(qū)域P的面積為6,則m+n的最小值為4+$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知單調(diào)遞增的等比數(shù)列{an}滿足:a2+a3+a4=28,且a3+2是a2、a4的等差中項(xiàng).
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)若bn=anlog2an,Sn=b1+b2+…+bn,求數(shù)列{bn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.某市在“國(guó)際禁毒日”期間,連續(xù)若干天發(fā)布了“珍愛生命,原理毒品”的電視公益廣告,期望讓更多的市民知道毒品的危害性,禁毒志愿者為了了解這則廣告的宣傳效果,隨機(jī)抽取了100名年齡階段性在[10,20),[20,30),[30,40),[40,50),[50,60)的市民進(jìn)行問卷調(diào)查,由此得到樣本頻率分布直方圖如圖所示.
(Ⅰ)求隨機(jī)抽取的市民中年齡段在[30,40)的人數(shù);
(Ⅱ)從不小于40歲的人中按年齡段分層抽樣的方法隨機(jī)抽取5人,求[50,60)年齡段抽取的人數(shù);
(Ⅲ)從(Ⅱ)中方式得到的5人中再抽取2人作為本次活動(dòng)的獲獎(jiǎng)?wù),記X為年齡在[50,60)年齡段的人數(shù),求X的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.下列函數(shù)中,在其定義域內(nèi)是增函數(shù)而且又是奇函數(shù)的是(  )
A.y=2xB.y=2|x|C.y=2x-2-xD.y=2x+2-x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知向量$\overrightarrow{a}$,$\overrightarrow$滿足|$\overrightarrow$|=4,$\overrightarrow{a}$在$\overrightarrow$方向上的投影是$\frac{1}{2}$,則$\overrightarrow{a}$•$\overrightarrow$=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知數(shù)列{an}的前n項(xiàng)和為Sn,a1=1,Sn=2an+1,則當(dāng)n>1時(shí),Sn=(  )
A.($\frac{3}{2}$)n-1B.2n-1C.($\frac{2}{3}$)n-1D.$\frac{1}{3}$($\frac{1}{{2}^{n-1}}$-1)

查看答案和解析>>

同步練習(xí)冊(cè)答案