分析 求出f(x)的導數(shù),得到g(x)的表達式,求出g(x)的導數(shù),從而求出g(x)的極值點,求出g(x)的極值即可.
解答 解:∵f(x)=x3-$\frac{3}{2}$x2-3x+1,
∴f′(x)=3x2-3x-3,
∴g(x)=$\frac{f′(x)}{{e}^{x}}$=$\frac{3{(x}^{2}-x-1)}{{e}^{x}}$,
∴函數(shù)g′(x)=$\frac{-3x(x-3)}{{e}^{x}}$,
令g′(x)=0,解得:x=0,3
∴g(0),g(3)是函數(shù)的極值,
∴g(x)極小值=g(0)=-3,g(x)極大值=g(3)=$\frac{15}{{e}^{3}}$.
點評 本題考查了導數(shù)應(yīng)用,函數(shù)的極值問題,是一道基礎(chǔ)題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 14+6$\sqrt{5}$ | B. | 28+6$\sqrt{5}$ | C. | 28+12$\sqrt{5}$ | D. | 36+12$\sqrt{5}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | a≥1 | B. | -1<a<0 | C. | a<0 | D. | 0<a<1 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com