14.函數(shù)y=(log2a)x是減函數(shù),則a的取值范圍是a∈(1,2).

分析 根據(jù)指數(shù)函數(shù)的性質(zhì)得到:0<${log}_{2}^{a}$<1,解不等式求出a的范圍即可.

解答 解:若函數(shù)y=(log2a)x是減函數(shù),
則0<${log}_{2}^{a}$<1,
解得:1<a<2,
故答案為:a∈(1,2).

點評 本題考查了指數(shù)函數(shù)以及對數(shù)函數(shù)的性質(zhì),是一道基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知f(x)=x3-$\frac{3}{2}$x2-3x+1,設(shè)g(x)=$\frac{f′(x)}{{e}^{x}}$,求函數(shù)g(x)的極值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.一個空間幾何體的三視圖如圖所示,則該幾何體的表面積為50$\sqrt{3}$+50.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知函數(shù)f(x)=2x-1+a,g(x)=bf(1-x),其中a,b∈R,若關(guān)于x的不等式f(x)≥g(x)的解的最小值為2,則a的取值范圍是a≤-2或a>-$\frac{1}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知函數(shù)f(x)的導(dǎo)函數(shù)為f′(x),若?x∈(0,+∞),都有xf′(x)<2f(x)成立,則(  )
A.2f($\sqrt{3}$)>3f($\sqrt{2}$)B.2f(1)<3f($\sqrt{2}$)C.4f($\sqrt{3}$)<3f(2)D.4f(1)>f(2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知數(shù)列{an}中,an+1=$\frac{{2015a}_{n}}{{2013a}_{n}+2015}$,n∈N*,a1=1,則a2016的值為$\frac{1}{2014}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知二次函數(shù)y=3x2-12x+18,求該函數(shù)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知sin(5π-θ)+sin($\frac{5π}{2}$-θ)=$\frac{\sqrt{7}}{2}$.求:
(1)sin3($\frac{π}{2}$+θ)-cos3($\frac{3π}{2}$-θ);
(2)sin4($\frac{π}{2}$-θ)+cos4($\frac{7π}{2}$+θ).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.不等式x2-x>0的解集是( 。
A.(1,+∞)B.(0,1)C.(-∞,0)D.(-∞,0)∪(1,+∞)

查看答案和解析>>

同步練習(xí)冊答案