8.已知冪函數(shù)y=f(x)的圖象經(jīng)過點(2,8),則f(3)的值為( 。
A.9B.27C.64D.16$\sqrt{2}$

分析 設(shè)冪函數(shù)f(x)=xα,則由f(x)圖象經(jīng)過點(2,8),可得 (2)α=8,求得α的值,可得函數(shù)的解析式,從而求得f(3)的值.

解答 解:設(shè)冪函數(shù)f(x)=xα,則由f(x)圖象經(jīng)過點(2,8),可得 (2)α=8,∴α=3,
故冪函數(shù)f(x)=x3,∴f(3)=33=27,
故選:B.

點評 本題主要考查用待定系數(shù)法求函數(shù)的解析式,求函數(shù)的值,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.若代數(shù)式x2-6x+b可化為(x-a)2-1,則b-a的值是5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.定義在R上的函數(shù)g(x)=ex+e-x+|x|,則滿足g(2x-1)<g(3)的x的取值范圍是( 。
A.(-∞,2)B.(-2,2)C.(-1,2)D.(2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知函數(shù)f(3x+1)=x2+3x+2,則f(10)=(  )
A.30B.6C.20D.9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知Sn為等差數(shù)列{an}的前n項和,且a1=2,a4=20
(I)求數(shù)列{an}的通項公式;
(II)設(shè)bn=$\frac{1}{{a}_{n}{a}_{n+1}}$,求數(shù)列{an}的前n項和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.若cos($\frac{π}{3}$-2x)=-$\frac{7}{8}$,則cos($\frac{π}{6}$-x)的值為( 。
A.-$\frac{1}{4}$B.±$\frac{1}{4}$C.$\frac{7}{8}$D.±$\frac{7}{8}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.若圓x2+y2+2kx+2y+2=0(k>0)與兩坐標(biāo)軸無公共點,那么實數(shù)k的取值范圍是( 。
A.0<k<$\sqrt{2}$B.1<k<$\sqrt{2}$C.0<k<1D.k>$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.定義:若對于平面點集A中的任意一個點(x0,y0),總存在正實數(shù)r,使得集合{(x,y)|$\sqrt{(x-{x}_{0})^{2}+(y-{y}_{0})^{2}}$<r}⊆A,則稱A為一個開集,給出下列集合:
①{(x,y)|x2+y2<1};     ②{(x,y)|x+y≥2};
③{(x,y)||x+y|≤5};    ④{(x,y)|$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{2}$=1}.
其中為開集的是①.(寫出所有符合條件的序號).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知i是虛數(shù)單位,復(fù)數(shù)$\overline{Z}$=|1-$\sqrt{3}$i|($\sqrt{3}$-i),$\overline{Z}$是Z的共軛復(fù)數(shù),則Z的虛部為(  )
A.4B.-4C.2D.-2

查看答案和解析>>

同步練習(xí)冊答案