9.若非空集合M是集合N的真子集,則“a∈M或a∈N”是“a∈M∩N”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.即不充分也不必要條件

分析 先根據(jù)并集的定義求{a|a∈M}∪{a|a∈N},然后根據(jù)交集的定義求出M∩N,最后根據(jù)充要條件的判定方法進行判定即可.

解答 解:∵非空集合M?N,{a|a∈M}∪{a|a∈N}=N
M∩N=M
而M?N
∴“a∈M或a∈N”?“a∈M∩N”
即“a∈M或a∈N”是“a∈M∩N”的必要非充分條件
故選:B.

點評 本題主要考查了充要條件的判定,A⇒B,則A是B的充分條件,B是A的必要條件,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.經(jīng)過點(1,3)且與原點距離是1的直線方程是x=1或4x-3y+5=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.函數(shù)f(x)對于x>0有意義,且當(dāng)x>1時,f(x)>0,f(2)=1,滿足f(xy)=f(x)+f(y)
(1)證明:f(1)=0.
(2)證明:f(x)在(0,+∞)上是單調(diào)遞增函數(shù).
(3)若f(x)+f(x-2)≥2成立,求x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.在△ABC中,AB=2$\sqrt{3}$,BC=3,∠ABC=30°,則AC=( 。
A.$\sqrt{3}$B.2$\sqrt{3}$C.$\sqrt{21-6\sqrt{3}}$D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知圓C的參數(shù)方程為$\left\{\begin{array}{l}{x=1+\sqrt{2}cosα}\\{y=1+\sqrt{2}sinα}\end{array}\right.$(α為參數(shù)).
(1)求圓C的普通方程;
(2)在直角坐標(biāo)系xoy中,以坐標(biāo)原點為極點,x軸的非負半軸為極軸建立極坐標(biāo)系,求圓C的極坐標(biāo)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.“tana=2”是“tan2a=-$\frac{4}{3}$”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.“m>0”是“函數(shù)y=2x2+mx+n在[0,+∞)上單調(diào)”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分與不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知二次函數(shù)f(x)=x2+2mx+2m+1,
(1)若函數(shù)f(x)有兩個零點,有一個零點在在區(qū)間(-1,0)內(nèi),另一個零點在區(qū)間(1,2)內(nèi),求m
的范圍;
(2)若x∈[0,2],求f(x)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.設(shè)復(fù)數(shù)z滿足i(z+1)=-3+2i(i是虛數(shù)單位),則|z|=$\sqrt{10}$.

查看答案和解析>>

同步練習(xí)冊答案