20.點(diǎn)P(m,n)到直線3x-4y=5的距離d=2,則實(shí)數(shù)m,n滿足的條件是( 。
A.|3m-4n-5|=10B.|3m-4n+5|=10C.3m-4n-5=10D.3m-4n+5=10

分析 利用點(diǎn)到直線距離公式求解.

解答 解:∵點(diǎn)P(m,n)到直線3x-4y=5的距離d=2,
∴$\frac{|3m-4n-5|}{\sqrt{9+16}}$=2,
整理,得|3m-4n-5|=10.
故選:A.

點(diǎn)評(píng) 本題考查實(shí)數(shù)滿足條件的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意點(diǎn)到直線的距離公式的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.在銳角三角形△ABC中,若sin(A+B)=$\frac{3}{5}$,sin(A-B)=$\frac{1}{5}$
(1)求$\frac{tanA}{tanB}$的值
(2)求tanC,tanA,tanB的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.函數(shù)f(x)=$\sqrt{27-{3}^{2x+1}}$的定義域是(-∞,1](用區(qū)間表示).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.若角α是第三象限角,則cosα•$\sqrt{1+ta{n}^{2}α}$+$\frac{tanα}{\sqrt{\frac{1}{co{s}^{2}α}-1}}$的值為( 。
A.1B.±1C.-1D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.函數(shù)f(x)=ax2-(3a-1)x+a2在[1,+∞)上是增函數(shù),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知向量$\overrightarrow{a}$=(-3,2),$\overrightarrow$=(2,1),$\overrightarrow{c}$=(3,-1),t∈R.
(1)向量$\overrightarrow{a}$-$\overrightarrow$會(huì)與非零向量t$\overrightarrow{c}$共線嗎?
(2)t為何值時(shí),$\overrightarrow{a}$-t$\overrightarrow$與$\overrightarrow{c}$共線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知函數(shù)f(x)=$\frac{{x}^{2}-ax+^{2}}{x+a}$(x∈[0,+∞),其中a>0,b∈R.記M(a,b)為f(x)的最小值.
(Ⅰ)求f(x)的單調(diào)遞增區(qū)間;
(Ⅱ)求a的取值范圍,使得存在b,滿足M(a,b)=-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.已知$|\overrightarrow a|=3,|\overrightarrow b|=4$,且$\overrightarrow a$與$\overrightarrow b$的夾角θ=120°,求
(1)$\overrightarrow{a}•\overrightarrow$;           
(2)$|\overrightarrow a+\overrightarrow b|$;        
(3)($\overrightarrow a$-$\overrightarrow b$)在$\overrightarrow{a}方向上$的射影.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.函數(shù)f(x)的定義域?yàn)镈,若對(duì)于任意x1,x2∈D,當(dāng)x1<x2時(shí),都有f(x1)≤f(x2),則稱函數(shù)f(x)在D上為非減函數(shù).設(shè)函數(shù)f(x)在[0,1]上為非減函數(shù),且滿足以下三個(gè)條件:①f(0)=0;②f(1-x)+f(x)=1;③f($\frac{x}{3}$)=$\frac{1}{2}$f(x).則f($\frac{1}{3}$)+f($\frac{5}{12}$)的值( 。
A.0B.$\frac{1}{2}$C.1D.2

查看答案和解析>>

同步練習(xí)冊(cè)答案