15.函數(shù)f(x)=ax2-(3a-1)x+a2在[1,+∞)上是增函數(shù),求實(shí)數(shù)a的取值范圍.

分析 根據(jù)函數(shù)單調(diào)性的性質(zhì)建立條件關(guān)系即可得到結(jié)論.

解答 解:若a=0,則函數(shù)為f(x)=x在R上是增函數(shù),滿足條件.
若a≠0,要使函數(shù)f(x)=ax2-(3a-1)x+a2在[1,+∞)上是增函數(shù),
則$\left\{\begin{array}{l}{a>0}\\{\frac{3a-1}{2a}≤1}\end{array}\right.$,即0<a≤1.
故實(shí)數(shù)a的取值范圍是0≤a≤1.

點(diǎn)評(píng) 本題主要考查函數(shù)單調(diào)性的應(yīng)用,注意要對(duì)a進(jìn)行分類討論.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.設(shè)a,b,c,d∈R,則“ac=2(b+d)”是“方程x2+ax+b=0與方程x2+cx+d=0中至少有一個(gè)實(shí)數(shù)根”的充分不必要條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.若不等式(-1)n+1•($\frac{2}{3}$)n•(2a-1)<1對(duì)一切正整數(shù)n恒成立,則實(shí)數(shù)a的取值范圍是-$\frac{1}{4}$<a<$\frac{5}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知sin(α-β)cosα-cos(β-α)sinα=$\frac{4}{5}$,β是第三象限的角,求sin(β+$\frac{π}{4}$)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知tanx=2,求2sin2x-3sinxcosx+cos2x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.點(diǎn)P(m,n)到直線3x-4y=5的距離d=2,則實(shí)數(shù)m,n滿足的條件是( 。
A.|3m-4n-5|=10B.|3m-4n+5|=10C.3m-4n-5=10D.3m-4n+5=10

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.化簡(jiǎn):$\frac{si{n}^{3}(-α)cos(α+5π)tan(α+2π)}{co{s}^{3}(-2π-α)sin(-α-π)ta{n}^{3}(4π+α)}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.(1)已知不等式|x+1|+|x-2|≥a的解集為R,求實(shí)數(shù)a的取值范圍;
(2)若函數(shù)f(x)=|x+1|+2|x-a|的最小值為5,求實(shí)數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.在△ABC中,根據(jù)下列條件解三角形,其中有一解的是( 。
A.b=7,c=3,C=30°B.b=5,c=4$\sqrt{2}$,B=45°C.a=6,b=6$\sqrt{3}$,B=60°D.a=20,b=30,A=30°

查看答案和解析>>

同步練習(xí)冊(cè)答案