11.以A表示值域?yàn)镽的函數(shù)組成的集合,B表示具有如下性質(zhì)的函數(shù)φ(x)組成的集合:對(duì)于函數(shù)φ(x),存在一個(gè)正數(shù)M,使得函數(shù)φ(x)的值域包含于區(qū)間[-M,M].
例如,當(dāng)φ1(x)=x3,φ2(x)=sinx時(shí),φ1(x)∈A,φ2(x)∈B.現(xiàn)有如下結(jié)論:
①設(shè)函數(shù)f(x)的定義域?yàn)镈,若對(duì)于任何實(shí)數(shù)b,存在a∈D,使得f(a)=b,則f(x)∈A;
②若函數(shù)f(x)∈B,則f(x)有最大值和最小值;
③若函數(shù)f(x),g(x)的定義域相同,且f(x)∈A,g(x)∈B,則(f(x)+g(x))∉B;
④若函數(shù)f(x)=aln(x+2)+$\frac{x}{{x}^{2}+1}$(x>-2,a∈R)有最大值,則f(x)∈B.
其中正確的是( 。
A.②③④B.①③④C.②③D.①③

分析 根據(jù)題中的新定義,結(jié)合函數(shù)值域的概念,可判斷出命題①②③是否正確,再利用導(dǎo)數(shù)研究命題④中函數(shù)的值域,可得到其真假情況,從而得到本題的結(jié)論.

解答 解:(1)對(duì)于命題①,
“f(x)∈A”即函數(shù)f(x)值域?yàn)镽,
“?b∈R,?a∈D,f(a)=b”表示的是函數(shù)可以在R中任意取值,
故有:設(shè)函數(shù)f(x)的定義域?yàn)镈,則“f(x)∈A”的充要條件是“?b∈R,?a∈D,f(a)=b”,
∴命題①是真命題;
(2)對(duì)于命題②,
若函數(shù)f(x)∈B,即存在一個(gè)正數(shù)M,使得函數(shù)f(x)的值域包含于區(qū)間[-M,M].
∴-M≤f(x)≤M.例如:函數(shù)f(x)滿足-2<f(x)<5,則有-5≤f(x)≤5,此時(shí),f(x)無(wú)最大值,無(wú)最小值.
∴命題②“函數(shù)f(x)∈B的充要條件是f(x)有最大值和最小值.”是假命題;
(3)對(duì)于命題③,
若函數(shù)f(x),g(x)的定義域相同,且f(x)∈A,g(x)∈B,
則f(x)值域?yàn)镽,f(x)∈(-∞,+∞),
并且存在一個(gè)正數(shù)M,使得-M≤g(x)≤M.
∴f(x)+g(x)∈R.
則f(x)+g(x)∉B.
∴命題③是真命題.
(4)對(duì)于命題④,
∵函數(shù)f(x)=aln(x+2)+$\frac{x}{{x}^{2}+1}$(x>-2,a∈R)有最大值,
∴假設(shè)a>0,當(dāng)x→+∞時(shí),$\frac{x}{{x}^{2}+1}$→0,ln(x+2)→+∞,∴aln(x+2)→+∞,則f(x)→+∞.與題意不符;
  假設(shè)a<0,當(dāng)x→-2時(shí),$\frac{x}{{x}^{2}+1}$→-$\frac{2}{5}$,ln(x+2)→-∞,∴aln(x+2)→+∞,則f(x)→+∞.與題意不符.
∴a=0.即函數(shù)f(x)=$\frac{x}{{x}^{2}+1}$(x>-2)
當(dāng)x>0時(shí),x+$\frac{1}{x}$≥2,∴0<$\frac{1}{1+\frac{1}{x}}$$≤\frac{1}{2}$,即0<f(x)$≤\frac{1}{2}$;
當(dāng)x=0時(shí),f(x)=0;
當(dāng)x<0時(shí),x+$\frac{1}{x}$≤-2,∴-$\frac{1}{2}≤\frac{1}{x+\frac{1}{x}}$<0,即-$\frac{1}{2}≤f(x)<0$.
∴-$\frac{1}{2}≤f(x)≤\frac{1}{2}$.即f(x)∈B.故命題④是真命題.
故選:B.

點(diǎn)評(píng) 本題考查命題真假的判斷,是中檔題,解題時(shí)要認(rèn)真審題,注意函數(shù)性質(zhì)的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.已知集合A={0,1},B={2,a2},且A∪B={0,1,2,4},則a的值為( 。
A.2B.-2C.4D.±2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.已知f(x)=$\left\{{\begin{array}{l}{{x^2}+3x+1,x≥0}\\{-{x^2}+x+2,x<0}\end{array}}\right.$,則不等式f(2x2-|x|)≤5的解集為[-1,1].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.函數(shù)$f(x)=\frac{{\sqrt{4-x}}}{x-1}$的定義域?yàn)椋ā 。?table class="qanwser">A.(-∞,4]B.(-∞,1)∪(1,4]C.[-2,2]D.(-1,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.若集合A={x∈R|ax2+2x+1=0}的子集個(gè)數(shù)為2個(gè),則實(shí)數(shù)a的值為(  )
A.0或1B.0C.1D.0或-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.設(shè)$a={({\frac{2}{5}})^{\frac{3}{5}}}$,$b={({\frac{2}{5}})^{\frac{2}{5}}}$,$c={({\frac{3}{5}})^{\frac{2}{5}}}$,則(  )
A.a<b<cB.a<c<bC.b<c<aD.b<a<c

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.已知P(3cosα,3sinα,1)和Q(2cosβ,2sinβ,1),則|$\overrightarrow{PQ}$|的取值范圍是( 。
A.(1,25)B.[1,25]C.[1,5]D.(1,5)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.若P是等邊三角形ABC所在平面外一點(diǎn),且PA=PB=PC,D,E,F(xiàn)分別是AB,BC,CA的中點(diǎn),則下列結(jié)論中不正確的是( 。
A.BC∥平面PDFB.DF⊥平面PAEC.平面PAE⊥平面ABCD.平面PDF⊥平面ABC

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.設(shè)f(x)=$\frac{mx}{1+|x|}$,集合N={y|y=f(x),x∈[a,b]},若使得N=[a,b]的實(shí)數(shù)對(duì)(a,b)(a<b)恰好有3個(gè),則實(shí)數(shù)m的取值范圍是m>1.

查看答案和解析>>

同步練習(xí)冊(cè)答案