6.設(shè)$A=\left\{{x|y=\sqrt{1-{x^2}}}\right\},B=\left\{{y|y=lg({1-{x^2}})}\right\}$,則A∩B=( 。
A.{(-1,1)}B.{(0,1)}C.[-1,0]D.[0,1]

分析 分別求出兩個函數(shù)的定義域和值域得到集合A,B,結(jié)合集合的交集運算定義,可得答案.

解答 解:∵由1-x2≥0得:x∈[-1,1],
∴A=[-1,1],
∵y=lg(1-x2)≤lg1=0得:
∴B=(-∞,0],
∴A∩B=[-1,0],
故選:C

點評 本題考查的知識點是集合的交集運算,求出A,B兩個集合是解答的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.下列函數(shù)既是偶函數(shù),又在(0,+∞)上單調(diào)遞增的是( 。
A.y=-x2B.y=x3C.y=log2|x|D.y=-3-x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.f(x)=lg(sinx-cosx)的定義域是(2kπ+$\frac{π}{4}$,2kπ+$\frac{5π}{4}$)(k∈Z).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.定義一個對應(yīng)法則f:P(m,n)→P′$(\sqrt{m},\sqrt{n})$,(m≥0,n≥0).現(xiàn)有點A(3,9)與點B(9,3),點M是線段AB上一動點,按定義的對應(yīng)法則f:M→M′.當(dāng)點M在線段AB上從點A開始運動到點B結(jié)束時,點M的對應(yīng)點M′所經(jīng)過的路線長度為$\frac{\sqrt{3}π}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.定義向量$\overrightarrow{OM}=(a,b)$的“相伴函數(shù)”為f(x)=asinx+bcosx;函數(shù)f(x)=asinx+bcosx的“相伴向量”為$\overrightarrow{OM}=(a,b)$(其中O為坐標(biāo)原點).記平面內(nèi)所有向量的“相伴函數(shù)”構(gòu)成的集合為S.
(1)設(shè)$g(x)=3sin(x+\frac{π}{2})+4sinx$,試判斷g(x)是否屬于S,并說明理由;
(2)已知h(x)=cos(x+α)+2cosx,且h(x)∈S,求其“相伴向量”的模;
(3)已知M(a,b)是函數(shù)$F(x)=2x+\frac{1}{x}$的圖象上一動點,向量$\overrightarrow{OM}$的“相伴函數(shù)”f(x)在x=x0處取得最大值.當(dāng)點M運動時,求tan2x0的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.某服裝廠生產(chǎn)一種服裝,每件服裝的成本為40元,出廠單價定為60元.該廠為鼓勵銷售商訂購,決定當(dāng)一次訂購量超過100件時,每多訂購一件,訂購的全部服裝的出廠單價就降低0.02元.根據(jù)市場調(diào)查,銷售商一次訂購量不會超過500件.
(1)設(shè)一次訂購量為x件,服裝的實際出廠單價為P元,寫出函數(shù)P=f(x)的表達式;
(2)當(dāng)銷售商一次訂購多少件時,該服裝廠獲得的利潤最大,最大利潤是多少元?
(服裝廠售出一件服裝的利潤=實際出廠單價-成本)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.在三角形ABC中,A=120°,AB=4,$BC=2\sqrt{19}$,則$\frac{sinB}{sinC}$的值為( 。
A.$\frac{3}{2}$B.$\frac{2}{3}$C.$\frac{{\sqrt{19}}}{2}$D.$\frac{{2\sqrt{19}}}{19}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.如圖,長方體ABCD-A1B1C1D1中,AB=16,BC=10,AA1=8,點E,F(xiàn)分別在A1B1,D1C1上,A1E=D1F=4,點H,G分別在AB,CD上,AH=DG=10.
(1)證明四邊形EFGH為正方形;
(2)求平面EFGH把該長方體分成的兩部分體積的比值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知函數(shù)g(x)=f(x-1)+x2是定義在R上的奇函數(shù),且f(0)=-2,則f(-2)=0.

查看答案和解析>>

同步練習(xí)冊答案