14.在平面直角坐標(biāo)系xOy中,曲線y=x2-6x+1與坐標(biāo)軸的交點(diǎn)都在圓C上.
(1)求圓C的方程;
(2)求圓被直線x-y-1=0所截得的弦長(zhǎng).

分析 (1)求出曲線y=x2-6x+1與坐標(biāo)軸的交點(diǎn),進(jìn)而確定圓心與半徑,即可求圓C的方程;
(2)求出圓心到直線的距離,利用勾股定理求圓被直線x-y-1=0所截得的弦長(zhǎng).

解答 解:(1)曲線y=x2-6x+1與y軸的交點(diǎn)為(0,1),
與x軸的交點(diǎn)為(3±2$\sqrt{2}$,0),
故可設(shè)C的圓心為(3,t),則有9+(t-1)2=8+t2,解得t=1,
則圓C的半徑為$\sqrt{9}$=3,
所以圓C的方程為(x-3)2+(y-1)2=9;
(2)圓心到直線的距離d=$\frac{|3-1-1|}{\sqrt{2}}$=$\frac{1}{\sqrt{2}}$,
所以圓被直線x-y-1=0所截得的弦長(zhǎng)為2$\sqrt{9-\frac{1}{2}}$=$\sqrt{34}$.

點(diǎn)評(píng) 本題考查圓的方程,考查直線與圓的位置關(guān)系,考查學(xué)生的計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知函數(shù)f(x)=x|x|,存在x∈[1,a+1]時(shí),使f(x2+a)<4f(x)成立,則a的取值范圍是(0,1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.在平面直角坐標(biāo)系xOy中,點(diǎn)A(0,3),直線l:y=2x-4.設(shè)圓C的半徑為1,圓心在l上.
(1)若圓心C也在直線y=-x+5上,求圓C的方程;
(2)在(1)的條件下,過點(diǎn)A作圓C的切線,求切線的方程;
(3)若圓C上存在點(diǎn)M,使|MA|=|MO|,求圓心C的橫坐標(biāo)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.甲乙兩人獨(dú)立地對(duì)同一目標(biāo)各射擊一次,命中率分別為0.6和0.5,現(xiàn)已知目標(biāo)被擊中,則它是被甲擊中的概率為0.75.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知雙曲線C:$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{4}$=1,直線l過原點(diǎn),
(1)若直線l與C有兩個(gè)不同的公共點(diǎn),求實(shí)數(shù)k的取值范圍;
(2)當(dāng)k=$\frac{1}{2}$時(shí),直線l截雙曲線C的弦長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.如圖,四棱錐P-ABCD中,側(cè)棱PA⊥底面ABCD,底面ABCD為菱形,E為側(cè)棱PC上一點(diǎn).
(1)若BE⊥PC,求證:平面BDE⊥平面PBC;
(2)若PA∥平面BDE,求證:E是PC的中點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.求證:橢圓$\frac{x^2}{25}+\frac{y^2}{9}=1$與曲線$\frac{x^2}{25-k}+\frac{y^2}{9-k}=1$(k<25且k≠9)有相同的焦點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知P(8,a)在拋物線y2=4px上,且P到焦點(diǎn)的距離為10,則焦點(diǎn)到準(zhǔn)線的距離為( 。
A.2B.4C.8D.16

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.如圖,在正方體ABCD-A1B1C1D1中,點(diǎn)E,F(xiàn)分別是上底面A1B1C1D1和側(cè)面CDD1C1的中心.
(1)求cos∠EAF;
(2)求直線AE與平面CDD1C1所成角的正弦值;
(3)求直線AF與平面BDD1B1所成角的大。

查看答案和解析>>

同步練習(xí)冊(cè)答案