2.$\frac{2cos10°-sin20°}{sin70°}$=$\sqrt{3}$.

分析 利用兩角和差的余弦公式,進(jìn)行化簡即可.

解答 解:原式=$\frac{2cos(30°-20°)-sin20°}{cos20°}$=$\frac{2(\frac{\sqrt{3}}{2}cos20°+\frac{1}{2}sin20°)-sin20°}{cos20°}$
=$\frac{\sqrt{3}cos20°+sin20°-sin20°}{cos20°}$=$\frac{\sqrt{3}cos20°}{cos20°}$=$\sqrt{3}$,
故答案為:$\sqrt{3}$.

點(diǎn)評 本題主要考查三角函數(shù)值的化簡,利用兩角和差的余弦公式是解決本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.在△ABC中,已知(a2+b2-c22=2(ab)2,則C等于(  )
A.30°B.45°C.60°D.45°或135°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.如圖,在四棱錐P-ABCD中,底面ABCD是正方形,△PAD是正三角形,平面PAD⊥平面ABCD,M和N分別是AD和BC的中點(diǎn).
(1)求證:PM⊥MN;
(2)求證:平面PMN⊥平面PBC;
(3)在PA上是否存在點(diǎn)Q,使得平面QMN∥平面PCD?若存在求出Q點(diǎn)位置,并證明;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.若關(guān)于x的方程x2-x+a=0和x2-x+b=0(a≠b)的4個實數(shù)根可以組成首項為$\frac{1}{4}$的等差數(shù)列,求|a-b|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.在△ABC中,a,b,c分別是角A、B、C的對邊,且sin2(${\frac{π-A}{2}}$)=$\frac{b+c}{2c}$,則△ABC的形狀是( 。
A.直角三角形B.等腰三角形或直角三角形
C.正三角形D.等腰直角三角形

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知函數(shù)f(x)=lnx-mx,m∈R
(Ⅰ)求f(x)的單調(diào)區(qū)間;
(Ⅱ)若f(x)≤$\frac{m-1}{x}$-2m+1在[1,+∞)上恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.在四棱錐P-ABCD中,PA⊥平面ABCD,△ABC是正三角形,AC與BD的交點(diǎn)M恰好是AC中點(diǎn),又PA=AB=4,∠CDA=120°,點(diǎn)N在線段PB上,且PN=$\sqrt{2}$
(Ⅰ)求證:MN∥平面PDC;
(Ⅱ)求二面角A-PC-B的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知函數(shù)f(x)=(2a+2)lnx+2ax2+5.
(1)討論函數(shù)f(x)的單調(diào)性;
(2)設(shè)a<-1,若對任意不相等的正數(shù)x1,x2,恒有|$\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$|≥8,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.直三棱柱ABC-A1B1C1中,∠B1BC1=30°,AB=BC=CA,M、N分別是棱AA1、A1B1中點(diǎn),則MN與AC所成的角的余弦值為(  )
A.$\frac{1}{4}$B.$\frac{\sqrt{3}}{3}$C.$\frac{\sqrt{6}}{3}$D.$\frac{1}{3}$

查看答案和解析>>

同步練習(xí)冊答案