5.如圖為一個(gè)幾何體的三視圖,則該幾何體的體積為( 。
A.6-$\frac{3π}{4}$B.6-$\frac{3π}{2}$C.3-$\frac{3π}{2}$D.3-$\frac{3π}{4}$

分析 由三視圖判斷出此幾何體是長方體挖去了半個(gè)圓柱,由三視圖求出對應(yīng)的數(shù)據(jù),根據(jù)體積公式可得答案.

解答 解:由三視圖得,此幾何體是長方體挖去了半個(gè)圓柱,
且長寬高分別為2、1.5、1,圓柱的半徑為1,母線長是1.5,
所以此幾何體的體積V=2×$1.5×1-\frac{1}{2}×π×{1}^{2}×1.5$=3-$\frac{3π}{4}$,
故選:D.

點(diǎn)評 本題考查由三視圖求幾何體的體積,解題關(guān)鍵是判斷幾何體的形狀及幾何元素所對應(yīng)的數(shù)據(jù),考查空間想象能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知直線x-y+3=0與圓心為(3,4)的圓C相交,截得的弦長為2$\sqrt{2}$.
(1)求圓C的方程;
(2)設(shè)Q點(diǎn)的坐標(biāo)為(2,3),且動點(diǎn)M到圓C的切線長與|MQ|的比值為常數(shù)k(k>0).若動點(diǎn)M的軌跡是一條直線,試確定相應(yīng)的k值,并求出該直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知t<0,設(shè)函數(shù)f(x)=x3+$\frac{3(t-1)}{2}$x2-3tx.
(Ⅰ)討論函數(shù)f(x)的單調(diào)性;
(Ⅱ)若f(x)≤xex-m(e為自然對數(shù)的底數(shù))對任意x∈[0,+∞)恒成立時(shí),m的最大值為0,求t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.如圖,四棱錐P-ABCD的底面是邊長為4的正方形ABCD,側(cè)棱PA垂直于底面,且PA=3.
(1)求異面直線PB與CD所成的角的大小;(結(jié)果用反三角函數(shù)表示)
(2)求四棱錐P-ABCD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的離心率 e=$\frac{4}{5}$,且經(jīng)過點(diǎn)(0,3),左右焦點(diǎn)分別為F1,F(xiàn)2,
(1)求橢圓C的方程;
(2)過F1作直線l與橢圓C交于A、B兩點(diǎn),求△ABF2的面積S的最大值,并求出S取最大值時(shí)直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知函數(shù)f(x)=axlnx(a≠0,a∈R)
(1)求f(x)的單調(diào)區(qū)間;
(2)當(dāng)x∈(1,e)時(shí),不等式$\frac{x-1}{a}$<lnx恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.如圖,長方體ABCD-A1B1C1D1中,底面ABCD是正方形,AA1=2AB=2,E是DD1上的一點(diǎn),且滿足B1D⊥平面ACE.
(Ⅰ)求證:A1D⊥AE;
(Ⅱ)求三棱錐A-CDE的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的離心率為$e=\frac{{\sqrt{2}}}{2}$,并且橢圓經(jīng)過點(diǎn)$(-1,\frac{{\sqrt{2}}}{2})$,F(xiàn)為橢圓的左焦點(diǎn).
(1)求橢圓的方程
(2)設(shè)過點(diǎn)F的直線交橢圓于A,B兩點(diǎn),并且線段AB的中點(diǎn)在直線x+y=0上,求直線AB的直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.(1)證明:函數(shù)y=xsinx+cosx在區(qū)間($\frac{3}{2}$π,$\frac{5}{2}$π)內(nèi)是增函數(shù).
(2)證明:函數(shù)f(x)=ex+e-x在[0,+∞)上是增函數(shù).

查看答案和解析>>

同步練習(xí)冊答案