10.已知函數(shù)f(x)=$\frac{xln(x-1)}{x-2}$.
(Ⅰ)討論函數(shù)f(x)的單調(diào)性;
(Ⅱ)求證:當(dāng)x∈(1,2)∪(2,+∞)時(shí),f(x)>2.

分析 (Ⅰ)首先,利用導(dǎo)數(shù),求函數(shù)的導(dǎo)數(shù),然后,判斷函數(shù)的單調(diào)性進(jìn)行求解,
(Ⅱ)當(dāng)x∈(1,2)∪(2,+∞)時(shí),f(x)>2等價(jià)于$\frac{xln(x-1)}{x-2}$-2>0,也就是證$\frac{x}{x-2}$[ln(x-1)+$\frac{4}{x}$-2]>0.

解答 解:(Ⅰ)∵f′(x)=$\frac{-2ln(x-1)+x-\frac{x}{x-1}}{(x-2)^{2}}$
設(shè)h(x)=-2ln(x-1)+x-$\frac{x}{x-1}$,
則h′(x)=$\frac{{x}^{2}-4x+4}{(x-1)^{2}}$>0,
∴h(x)在(1,+∞)是增函數(shù),又h(2)=0,
∴當(dāng)x∈(1,2)時(shí),h(x)<0,
則f′(x)<0,f(x)是單調(diào)遞減函數(shù);
當(dāng)x∈(2,+∞)時(shí),h(x)>0,
則f′(x)>0,f(x)是單調(diào)遞增函數(shù).
綜上知:f(x)在(1,2)單調(diào)遞減函數(shù),f(x)在(2,+∞)單調(diào)遞增函數(shù).
(Ⅱ)當(dāng)x∈(1,2)∪(2,+∞)時(shí),f(x)>2等價(jià)于$\frac{xln(x-1)}{x-2}$-2>0,
也就是證$\frac{x}{x-2}$[ln(x-1)+$\frac{4}{x}$-2]>0                          
設(shè)G(x)=ln(x-1)+$\frac{4}{x}$-2,G′(x)=$\frac{(x-2)^{2}}{(x-1){x}^{2}}$≥0          
∴G(x) 在(1,+∞)單調(diào)遞增函數(shù),又G(2)=0
∴當(dāng)x∈(1,2)時(shí),G(x)<0,
則$\frac{x}{x-2}$[ln(x-1)+$\frac{4}{x}$-2]>0
當(dāng)x∈(2,+∞)時(shí),G(x)>0,
則 $\frac{x}{x-2}$[ln(x-1)+$\frac{4}{x}$-2]>0
綜上可得:當(dāng)x∈(1,2)∪(2,+∞)時(shí),f(x)>2.

點(diǎn)評(píng) 本題重點(diǎn)考查函數(shù)的單調(diào)性與導(dǎo)數(shù),求導(dǎo)法則、求導(dǎo)公式及其運(yùn)用,屬于中檔題,難度中等.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.設(shè)集合A、B分別是函數(shù)y=$\frac{1}{\sqrt{{x}^{2}+2x-8}}$與函數(shù)y=lg(6+x-x2)的定義域,C={x|x2-4ax+3a2<0},若A∩B⊆C,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.對(duì)圖中各組向量$\overrightarrow{a}$、$\overrightarrow$,求作$\overrightarrow{a}$-$\overrightarrow$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.已知命題p:?x∈R,使得sinx≥1,命題q:?x∈R,x2+x+1>0,下列命題為真的是(  )
A.p∧qB.(¬p)∧qC.p∧(¬q)D.(¬p)∧(¬q)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.設(shè)非零向量$\overrightarrow{a}$,$\overrightarrow$,$\overrightarrow{c}$,$\overrightarrowv0tq6cy$,滿足$\overrightarrowbqnhs8k$=($\overrightarrow{a}$•$\overrightarrow{c}$)$\overrightarrow$-($\overrightarrow{a}$•$\overrightarrow$)$\overrightarrow{c}$,求證:$\overrightarrow{a}$⊥$\overrightarrowxdegb4d$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.已知函數(shù)f(x)=(x-a)sinx+cosx,x∈(0,π),當(dāng)a>$\frac{π}{2}$時(shí),求函數(shù)f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.已知α是第二象限角,且tanα=-$\frac{1}{3}$,則sin2α=(  )
A.-$\frac{3\sqrt{10}}{10}$B.$\frac{3\sqrt{10}}{10}$C.-$\frac{3}{5}$D.$\frac{3}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.己知點(diǎn)A,B是函數(shù)y=2|x|(x∈[-1,1])圖象上的兩個(gè)動(dòng)點(diǎn),AB∥x軸,點(diǎn)B在y軸的右側(cè),點(diǎn)M(1,m)(m>2)是線段BC的中點(diǎn).
(1)設(shè)點(diǎn)B的橫坐標(biāo)為a,△ABC的面積為S,求S關(guān)于a的函數(shù)解析式S=f(a);
(2)若(1)中的f(a)滿足f(a)≤$\frac{{m}^{2}}{6}$-2mk-1對(duì)所有a∈(0,1],m∈(4,+∞)恒成立,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.下列函數(shù)中最小值為4的是( 。
A.$y=x+\frac{4}{x}$B.y=3x+4•3-x
C.$y=sinx+\frac{4}{sinx}$ (0<x<π)D.y=lgx+4logx10

查看答案和解析>>

同步練習(xí)冊(cè)答案