18.已知命題p:?x∈R,使得sinx≥1,命題q:?x∈R,x2+x+1>0,下列命題為真的是( 。
A.p∧qB.(¬p)∧qC.p∧(¬q)D.(¬p)∧(¬q)

分析 首先判斷命題p和q的真假,再利用真值表對(duì)照各選項(xiàng)選擇.
命題p的真假有正弦函數(shù)的有界性判斷,命題q的真假結(jié)合二次函數(shù)的圖象只需看△.

解答 解:命題p:x=$\frac{π}{2}$時(shí),sinx=1,命題p為真命題;
命題q:△=1-4=-3<0,故?x∈R,都有x2+x+1>0為真.
A、命題“p∧q”是真命題,
B、¬p為假,故命題“¬p∧q”是假命題,
C、¬q為假,故命題“p∧(¬q)”是假命題,
D、¬p,¬q為假,故命題“(¬p)∧(¬q)”是假命題,
故選:A.

點(diǎn)評(píng) 本題考查命題和復(fù)合命題真假的判斷、正弦函數(shù)的有界性及二次函數(shù)恒成立等知識(shí),屬基本題型的考查.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知函數(shù)f(x)=x3-x+t,t≥0,g(x)=lnx.
(1)令h(x)=f(x)+g(x),求證:h(x)是增函數(shù);
(2)直線l與函數(shù)f(x),g(x)的圖象都相切,對(duì)于確定的正實(shí)數(shù)t,討論直線l的條數(shù),并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知:cosα=-$\frac{12}{13}$,α∈($\frac{π}{2}$,π),試求:
(1)sin2α,
(2)cos(α+$\frac{π}{6}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.先化簡(jiǎn),再求值;(1-$\frac{3}{x+2}$)÷$\frac{x-1}{{x}^{2}+2x}$-$\frac{x}{x+1}$,其中x滿足x2-x-1=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.已知函數(shù)f(x)是奇函數(shù),且當(dāng)x≥0時(shí),f(x)=1n($\sqrt{1+{x}^{2}}$-x).
(1)證明函數(shù)f(x)在[0,+∞)上為減函數(shù);
(2)若f(t)+f(1-2t)<0,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知向量$\overrightarrow{m}$=(cosx,1-asinx),$\overrightarrow{n}$=(cosx,2),其中a∈R,x∈R,設(shè)f(x)=$\overrightarrow{m}$•$\overrightarrow{n}$,且函數(shù)f(x)的最大值為g(a).
(I)求函數(shù)g(a)的解析式;
(Ⅱ)設(shè)0≤θ<2π,求函數(shù)g(2cosθ+1)的最大值和最小值以及對(duì)應(yīng)的θ值;
(Ⅲ)若對(duì)于任意的實(shí)數(shù)x∈R,g(x)≥kx+$\frac{5}{2}$恒成立,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知函數(shù)f(x)=$\frac{xln(x-1)}{x-2}$.
(Ⅰ)討論函數(shù)f(x)的單調(diào)性;
(Ⅱ)求證:當(dāng)x∈(1,2)∪(2,+∞)時(shí),f(x)>2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.化簡(jiǎn)$\sqrt{1-si{n}^{2}\frac{3π}{5}}$=( 。
A.sin$\frac{2π}{5}$B.cos$\frac{π}{10}$C.cos$\frac{2π}{5}$D.cos$\frac{π}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.兩圓${C_1}:{x^2}+{y^2}-1=0$和${C_2}:{x^2}+{y^2}-4x-5=0$的位置關(guān)系是( 。
A.相交B.外離C.外切D.內(nèi)切

查看答案和解析>>

同步練習(xí)冊(cè)答案