5.設非零向量$\overrightarrow{a}$,$\overrightarrow$,$\overrightarrow{c}$,$\overrightarrownz2ls2z$,滿足$\overrightarrowpdfmegd$=($\overrightarrow{a}$•$\overrightarrow{c}$)$\overrightarrow$-($\overrightarrow{a}$•$\overrightarrow$)$\overrightarrow{c}$,求證:$\overrightarrow{a}$⊥$\overrightarrowx1tqryv$.

分析 運用向量垂直的條件:數(shù)量積為0,結合向量數(shù)量積的交換律,即可得證.

解答 證明:$\overrightarrow6zlxqst$=($\overrightarrow{a}$•$\overrightarrow{c}$)$\overrightarrow$-($\overrightarrow{a}$•$\overrightarrow$)$\overrightarrow{c}$,
可得$\overrightarrow{a}$•$\overrightarrow0sovtvg$=$\overrightarrow{a}$•[($\overrightarrow{a}$•$\overrightarrow{c}$)•$\overrightarrow$-($\overrightarrow{a}$•$\overrightarrow$)•$\overrightarrow{c}$]
=($\overrightarrow{a}$•$\overrightarrow$)•($\overrightarrow{a}$•$\overrightarrow{c}$)-($\overrightarrow{a}$•$\overrightarrow{c}$)•($\overrightarrow{a}$•$\overrightarrow$)=0,
即有$\overrightarrow{a}$⊥$\overrightarrowwelok52$.

點評 本題考查向量的數(shù)量積的性質(zhì),主要是向量垂直的條件:數(shù)量積為0,考查運算能力,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

15.$\overrightarrow{a}$、$\overrightarrow$、$\overrightarrow{c}$是同一平面內(nèi)的三個向量,其中$\overrightarrow{a}$=(1,2),$\overrightarrow$=(-2,3),$\overrightarrow{c}$=(-2,m).
(1)若$\overrightarrow{a}$⊥($\overrightarrow+\overrightarrow{c}$)求|$\overrightarrow{c}$|;
(2)若k$\overrightarrow{a}$+$\overrightarrow$與2$\overrightarrow{a}$-$\overrightarrow$共線,求k的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.在△ABC中,如果a=$\sqrt{3}$+1,b=2,c=$\sqrt{2}$,那么∠C等于(  )
A.60°B.45°C.30°D.15°

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.已知函數(shù)f(x)是奇函數(shù),且當x≥0時,f(x)=1n($\sqrt{1+{x}^{2}}$-x).
(1)證明函數(shù)f(x)在[0,+∞)上為減函數(shù);
(2)若f(t)+f(1-2t)<0,求實數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.在矩形ABCD中,|$\overrightarrow{AB}$|=4,|$\overrightarrow{BC}$|=2,則向量$\overrightarrow{AB}$+$\overrightarrow{AD}$+$\overrightarrow{AC}$的長度等于(  )
A.2$\sqrt{5}$B.4$\sqrt{5}$C.12D.6

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.已知函數(shù)f(x)=$\frac{xln(x-1)}{x-2}$.
(Ⅰ)討論函數(shù)f(x)的單調(diào)性;
(Ⅱ)求證:當x∈(1,2)∪(2,+∞)時,f(x)>2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.已知二次函數(shù)f(x)滿足f(0)=1,f(2)=3,且在(-∞,$\frac{1}{2}$]上為減函數(shù),在[$\frac{1}{2}$,+∞)上為增函數(shù).
(1)求函數(shù)f(x)的解析式;
(Ⅱ)若x∈[-1,1],求函數(shù)f(x)的值域;
(Ⅲ)若f(x)-g(x)=-2x+3,求函數(shù)g(x)的零點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

5.已知函數(shù)f(x)=$\left\{\begin{array}{l}{2x+1,x≤0}\\{f(x-3),x>0}\end{array}\right.$,則f(1)=-3,f(2015)=-1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.工藝扇面是中國書畫一種常見的表現(xiàn)形式.某班級想用布料制作一面如圖所示的扇面.已知扇面展開的中心角為120°,外圓半徑為60cm,內(nèi)圓半徑為30cm.則制作這樣一面扇面需要的布料為2826cm2(用數(shù)字作答,π取3.14).

查看答案和解析>>

同步練習冊答案