1.對圖中各組向量$\overrightarrow{a}$、$\overrightarrow$,求作$\overrightarrow{a}$-$\overrightarrow$

分析 將兩向量的起點平移到一起,則$\overrightarrow{a}$-$\overrightarrow$表示由$\overrightarrow$的終點指向$\overrightarrow{a}$的終點的向量.

解答 解:(1)

(2)

(3)

點評 本題考查了利用平面向量的三角形法則作圖,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

11.已知等差數(shù)列{an}的公差不為零,a1=11,且a2,a5,a6成等比數(shù)列.
(Ⅰ)求{an}的通項公式;
(Ⅱ)設Sn=|a1|+|a2|+|a3|+…+|an|,求 Sn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.函數(shù)f(x)=sinx-$\sqrt{3}$cosx(x∈R)的值域是[-2,2].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.已知:cosα=-$\frac{12}{13}$,α∈($\frac{π}{2}$,π),試求:
(1)sin2α,
(2)cos(α+$\frac{π}{6}$)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.在△ABC中,如果a=$\sqrt{3}$+1,b=2,c=$\sqrt{2}$,那么∠C等于( 。
A.60°B.45°C.30°D.15°

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.先化簡,再求值;(1-$\frac{3}{x+2}$)÷$\frac{x-1}{{x}^{2}+2x}$-$\frac{x}{x+1}$,其中x滿足x2-x-1=0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.已知函數(shù)f(x)是奇函數(shù),且當x≥0時,f(x)=1n($\sqrt{1+{x}^{2}}$-x).
(1)證明函數(shù)f(x)在[0,+∞)上為減函數(shù);
(2)若f(t)+f(1-2t)<0,求實數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.已知函數(shù)f(x)=$\frac{xln(x-1)}{x-2}$.
(Ⅰ)討論函數(shù)f(x)的單調(diào)性;
(Ⅱ)求證:當x∈(1,2)∪(2,+∞)時,f(x)>2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.在△ABC 中,內(nèi)角A,B,C 所對的邊分別為a,b,c,已知a2,b2,c2成等差數(shù)列,則cosB的最小值為( 。
A.$\frac{1}{2}$B.$\frac{{\sqrt{2}}}{2}$C.$\frac{3}{4}$D.$\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

同步練習冊答案