14.設(shè)定義在R上的函數(shù)f(x)滿足以下條件:
(1)f(x)+f(-x)=0;
(2)f(x+1)=f(x-1);   
(3)當(dāng)0≤x≤1時(shí),f(x)=2x-1,
則$f(\frac{1}{2})+f(\frac{3}{2})+f(1)+f(2)+f(4)+f(\frac{9}{2})$=$\sqrt{2}$.

分析 可知f(x)是周期為2的奇函數(shù),從而可得f($\frac{1}{2}$)+f(-$\frac{1}{2}$)=0,f(0)=f(0)=0,從而解得.

解答 解:由題意知,
f(x)是周期為2的奇函數(shù),
故$f(\frac{1}{2})+f(\frac{3}{2})+f(1)+f(2)+f(4)+f(\frac{9}{2})$
=f($\frac{1}{2}$)+f(-$\frac{1}{2}$)+f(1)+f(0)+f(0)+f($\frac{1}{2}$)
=f(1)+f($\frac{1}{2}$)
=2-1+$\sqrt{2}$-1=$\sqrt{2}$;
故答案為:$\sqrt{2}$.

點(diǎn)評(píng) 本題考查了函數(shù)的性質(zhì)的判斷與應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知$f(x)=\left\{{\begin{array}{l}{{x^2}-4,x>0}\\{0,x=0}\\{1-x,x<0}\end{array}}\right.$.
(1)求f(f(-1)),f(f(1));   
(2)畫出f(x)的圖象;
(3)若f(x)=a,問a為何值時(shí),方程沒有根?有一個(gè)根??jī)蓚(gè)根?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.如圖,在平行四邊形ABCD中,∠ABD=90°,2AB2+BD2=4,若將其沿BD折成直二面角A-BD-C,則三棱錐A-BCD的外接球的表面積為( 。
A.B.C.12πD.16π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知拋物線C:y=ax2(a>0),過點(diǎn)P(0,1)的直線l交拋物線C于A、B兩點(diǎn).
(Ⅰ)若拋物線C的焦點(diǎn)為(0,$\frac{1}{4}$),求該拋物線的方程;
(Ⅱ)已知過點(diǎn)A、B分別作拋物線C的切線l1、l2,交于點(diǎn)M,以線段AB為直徑的圓經(jīng)過點(diǎn)M,求實(shí)數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知$f(x)=a•{log_2}({\sqrt{{x^2}+1}+x})+\frac{{b•\sqrt{4-{x^2}}}}{{|{x+3}|-3}}+e$(a,b為常數(shù),e為自然對(duì)數(shù)的底),且f(lg(logπe))=π,則f(lg(lnπ))=2e-π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.命題“?a∈R,a2≥0”的否定為( 。
A.?a∈R,a2<0B.?a∈R,a2≥0C.?a∉R,a2≥0D.?a∈R,a2<0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.設(shè)等比數(shù)列{an}的前n項(xiàng)和為Sn,且${S_n}={3^n}+k$
(Ⅰ)求k的值及數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)在an與an+1之間插入n個(gè)數(shù),使這n+2個(gè)數(shù)組成公差為dn的等差數(shù)列,求數(shù)列$\{\frac{1}{d_n}\}$的前n項(xiàng)和Tn,并求使$\frac{8}{5}{T_n}+\frac{n}{{5×{3^{n-1}}}}≤\frac{40}{27}$成立的正整數(shù)n的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.若函數(shù)y=a+sinx在區(qū)間[π,2π]上有且只有一個(gè)零點(diǎn),則a=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.設(shè)函數(shù)y=f (x)的定義域?yàn)镈,如果存在非零常數(shù)T,對(duì)于任意 x∈D,都有f(x+T)=T•f (x),則稱函數(shù)y=f(x)是“似周期函數(shù)”,非零常數(shù)T為函數(shù)y=f( x)的“似周期”.現(xiàn)有下面四個(gè)關(guān)于“似周期函數(shù)”的命題:
①如果“似周期函數(shù)”y=f(x)的“似周期”為-1,那么它是周期為2的周期函數(shù);
②函數(shù)f(x)=x是“似周期函數(shù)”;
③函數(shù)f(x)=2x是“似周期函數(shù)”;
④如果函數(shù)f(x)=cosωx是“似周期函數(shù)”,那么“ω=kπ,k∈Z”.
其中是真命題的序號(hào)是①④.(寫出所有滿足條件的命題序號(hào))

查看答案和解析>>

同步練習(xí)冊(cè)答案