18.函數(shù)y=x2+x在區(qū)間[1,2]上的平均變化率為4.

分析 利用函數(shù)的解析式求出區(qū)間兩個(gè)端點(diǎn)的函數(shù)值,再利用平均變化率公式求出該函數(shù)在區(qū)間[1,2]上的平均變化率.

解答 解:∵f(x)=x2+x,∴f(1)=2,f(2)=6,
∴該函數(shù)在區(qū)間[1,2]上的平均變化率為$\frac{6-2}{2-1}$=4,
故答案為:4.

點(diǎn)評(píng) 本題考查函數(shù)在區(qū)間上的平均變化率,考查學(xué)生的計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.計(jì)算:
(Ⅰ)log525+lg$\frac{1}{100}+ln\sqrt{e}+{2^{{{log}_2}1}}$;
(Ⅱ)${(\frac{9}{16})^{0.5}}+{(-3)^{-1}}÷{0.75^{-2}}-{(2\frac{10}{27})^{-\;\frac{2}{3}}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.定義運(yùn)算“*”如下,x*y=$\left\{\begin{array}{l}{x,x≥y}\\{y,x<y}\\{\;}\end{array}\right.$,若函數(shù)f(x)=m-(1-2x)*(2x-2)有兩個(gè)零點(diǎn),則m的取值范圍是(-$\frac{1}{2}$,1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.已知直線AB的傾斜角為45°,橢圓$\frac{{x}^{2}}{6}+\frac{{y}^{2}}{3}$=1上存在關(guān)于直線AB對(duì)稱的兩點(diǎn).則直線AB在y軸上的截距的取值范圍是(-1,1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.(1)已知點(diǎn)P在以坐標(biāo)軸為對(duì)稱軸的橢圓上,且P到兩焦點(diǎn)的距離分別為5、3,過(guò)P且與長(zhǎng)軸垂直的直線恰過(guò)橢圓的一個(gè)焦點(diǎn),求橢圓的方程.
(2)已知雙曲線的中心在原點(diǎn),焦點(diǎn)F1,F(xiàn)2在坐標(biāo)軸上,離心率為$\sqrt{2}$,且過(guò)點(diǎn)(4,-$\sqrt{10}$).求雙曲線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.如圖平面直角坐標(biāo)系xOy中,橢圓$\frac{x^2}{4}+{y^2}=1$,A1,A2分別是橢圓的左、右兩個(gè)頂點(diǎn),圓A1的半徑為2,過(guò)點(diǎn)A2作圓A1的切線,切點(diǎn)為P,在x軸的上方交橢圓于點(diǎn)Q.則$\frac{PQ}{Q{A}_{2}}$=$\frac{3}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.函數(shù)f(x)=log2(2-x)在x∈[0,1]上的最大值為1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.已知等比數(shù)列{an}是遞增數(shù)列,Sn是前n項(xiàng)和,若a1,a3是方程x2-5x+4=0的兩個(gè)根,則公比q=2,S6=31.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.將n2個(gè)數(shù)排成n行n列的一個(gè)數(shù)陣:
a11 a12 a13…a1n
a21 a22 a23…a2n
a31 a32 a33…a3n

an1 an2 an3…ann
已知a11=2,a13=a61+1,該數(shù)陣第一列的n個(gè)數(shù)從上到下構(gòu)成以m(m>0)為公差的等差數(shù)列,每一行的n個(gè)數(shù)從左到右構(gòu)成以m為公比的等比數(shù)列,則第7行第5列的數(shù)a75=( 。
A.432B.540C.1377D.1620

查看答案和解析>>

同步練習(xí)冊(cè)答案