11.討論函數(shù)y=ex+(a-1)x的單調(diào)區(qū)間.

分析 求出函數(shù)的導(dǎo)數(shù),通過討論a的范圍,從而求出函數(shù)的單調(diào)區(qū)間即可.

解答 解:y′=ex+a-1,
a≥1時,y′>0,函數(shù)在R遞增,
a<1時,令y′>0,解得:x>ln(1-a),令y′<0,解得:x<ln(1-a),
∴函數(shù)在(-∞,ln(1-a))遞減,在(ln(1-a),+∞)遞增.

點評 本題考查了函數(shù)的單調(diào)性問題,考查導(dǎo)數(shù)的應(yīng)用,是一道基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.在直角坐標(biāo)系xOy中,以O(shè)為極點,x軸的正半軸為極軸建立極坐標(biāo)系.已知直線l的極坐標(biāo)方程為ρsinθ=1,曲線C的參數(shù)方程為$\left\{\begin{array}{l}x=2cosϕ\\ y=2sinϕ\end{array}\right.$(ϕ為參數(shù)),l與C相交于A,B兩點,則|AB|=2$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.設(shè)f(x)是定義域為R且最小正周期為2π的函數(shù),且有f(x)=$\left\{\begin{array}{l}{sinx,0≤x≤π}\\{cosx,-π<x<0}\end{array}\right.$,則f(-$\frac{13π}{4}$)=( 。
A.$\frac{\sqrt{2}}{2}$B.-$\frac{\sqrt{2}}{2}$C.0D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.如圖,AB=AD,∠BAD=90°,M,N,G分別是BD,BC,AB的中點,將等邊△BCD沿BD折疊到△BC′D的位置,使得AD⊥C′B.
(Ⅰ)求證:平面GNM∥平面ADC′;
(Ⅱ)求證:C′A⊥平面ABD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.在直角坐標(biāo)系xOy中,圓C的參數(shù)方程為$\left\{\begin{array}{l}{x=2cosφ}\\{y=-2+2sinφ}\end{array}\right.$(φ為參數(shù)),以O(shè)為極點,x軸的非負(fù)半軸為極軸建立極坐標(biāo)系.
(I)求圓C的極坐標(biāo)方程;
(Ⅱ)若直線l的極坐標(biāo)方程是ρcos(θ+$\frac{π}{4}$)=$\sqrt{2}$,求直線l被圓C截得的弦長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知函數(shù)f(x)=x3-ax-1.
(1)是否存在a.使f(x)的單調(diào)減區(qū)間是(-1,1)?
(2)若f(x)在R上是增函數(shù).求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.如圖所示,AD是⊙O的直徑,AB是⊙O的切線,直線BMN交AD的延長線于點C,BM=MN=NC,AB=2,求CD的長和⊙O的半徑.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.在如下程序框圖中,已知f0(x)=sinx,則輸出的結(jié)果是( 。
A.sinxB.cosxC.-sinxD.-cosx

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知x>0,當(dāng)x+$\frac{4}{x}$取最小值時x的值為2.

查看答案和解析>>

同步練習(xí)冊答案