分析 由切線長定理知AB2=BM•BM=2BM2,從而得到BC,AC,由切割線定理,知:CD•CA=CN•CM,從而得到CD,由此能求出⊙O的半徑.
解答 解:∵AD是⊙O的直徑,AB是⊙O切線,A為切點,
⊙O上有兩點M、N,直線BMN交AD的延長線于點C,BM=MN=NC,AB=2,
∴AB2=BM•BM=2BM2,
即4=2BM2,解得BM=MN=CN=$\sqrt{2}$,∴BC=3$\sqrt{2}$
∴AC=$\sqrt{18-4}$=$\sqrt{14}$,
由切割線定理,知:CD•CA=CN•CM,
即CD$\sqrt{14}$=$\sqrt{2}•2\sqrt{2}$,解得CD=$\frac{4\sqrt{14}}{14}$,
∴⊙O的半徑r=$\frac{1}{2}$($\sqrt{14}$-$\frac{4\sqrt{14}}{14}$)=$\frac{5\sqrt{14}}{14}$.
點評 本題考查圓的半徑的求法,是中檔題,解題時要認(rèn)真審題,注意切線長定理和切割線定理的合理運用.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{12π}{25}$ | B. | $\frac{17π}{25}$ | C. | 3π | D. | $\frac{16π}{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 4π | B. | 6π | C. | 8π | D. | 16π |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ($\sqrt{3}$,3) | B. | (3,+∞) | C. | ($\sqrt{2}$,2) | D. | (2,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com