15.設(shè)雙曲線$\frac{x^2}{3}-{y^2}$=1的兩焦點分別為F1,F(xiàn)2,P為雙曲線上的一點,若PF1與雙曲線的一條漸近線平行,則$\overrightarrow{P{F}_{1}}$•$\overrightarrow{P{F}_{2}}$=(  )
A.$-\frac{35}{12}$B.$-\frac{11}{12}$C.$-\frac{7}{12}$D.$-\frac{1}{12}$

分析 求得雙曲線的a,b,c,可得兩焦點的坐標和漸近線方程,可設(shè)PF1與直線$y=\frac{{\sqrt{3}}}{3}x$平行,求得平行線的方程代入雙曲線的方程,求得P的坐標,再由向量的數(shù)量積的坐標表示,計算即可得到所求值.

解答 解:由雙曲線$\frac{x^2}{3}-{y^2}$=1的a=$\sqrt{3}$,b=1,c=2,
得F1(-2,0),F(xiàn)2(2,0),
漸近線為$y=±\frac{{\sqrt{3}}}{3}x$,
由對稱性,不妨設(shè)PF1與直線$y=\frac{{\sqrt{3}}}{3}x$平行,
可得${l_{P{F_1}}}:y=\frac{{\sqrt{3}}}{3}({x+2})$,
由$\left\{{\begin{array}{l}{\frac{x^2}{3}-{y^2}=1}\\{y=\frac{{\sqrt{3}}}{3}({x+2})}\end{array}}\right.$得$P({-\frac{7}{4},\frac{{\sqrt{3}}}{12}})$,
即有$\overrightarrow{P{F_1}}=({-\frac{1}{4},-\frac{{\sqrt{3}}}{12}})$,$\overrightarrow{P{F_2}}=({\frac{15}{4},-\frac{{\sqrt{3}}}{12}})$,
$\overrightarrow{P{F}_{1}}$•$\overrightarrow{P{F}_{2}}$=-$\frac{1}{4}$×$\frac{15}{4}$+(-$\frac{\sqrt{3}}{12}$)2=-$\frac{11}{12}$.
故選B.

點評 本題考查向量的數(shù)量積的坐標表示,注意運用雙曲線的漸近線方程和兩直線平行的條件,以及聯(lián)立直線和雙曲線求交點,考查運算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知雙曲線C:$\frac{{y}^{2}}{{a}^{2}}$-$\frac{{x}^{2}}{^{2}}$=1(a>0,b>0)的離心率$e=\frac{{\sqrt{5}}}{2}$,點P是拋物線y2=4x上的一動點,P到雙曲線C的上焦點F1(0,x)的距離與到直線x=-1的距離之和的最小值為$\sqrt{6}$,則該雙曲線的方程為( 。
A.$\frac{{y}^{2}}{2}$-$\frac{{x}^{2}}{3}$=1B.$\frac{{y}^{2}}{4}$-x2=1C.y2-$\frac{{x}^{2}}{4}$=1D.$\frac{{y}^{2}}{3}$-$\frac{{x}^{2}}{2}$=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知$f(x)=2{cos^2}x+\sqrt{3}sin2x+a,(a∈R)$
(1)若x∈R,求f(x)的單調(diào)增區(qū)間;
(2)若$x∈[0,\frac{π}{2}]$時,f(x)的最大值為3,求a的值;
(3)在(2)的條件下,若方程f(x)=m在$[0,\frac{3π}{4}]$上恰有兩個不等實數(shù)根,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.設(shè)集合A={x|-1≤x<3},B={x|x2-3x+2<0},則A∩(∁RB)可表示為( 。
A.[-1,1)∪(2,3)B.[-1,1]∪[2,3)C.(1,2)D.(-∞,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.i是虛數(shù)單位,復(fù)數(shù)$\frac{3+4i}{1-2i}$=( 。
A.1+2iB.1-2iC.-1+2iD.-1-2i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.“角α為鈍角”是“sinα>0且cosα<0”的( 。l件.
A.充要B.必要不充分
C.充分不必要D.既不充分又不必要

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.在${(x-\frac{1}{2x})^6}$的展開式中,x4的系數(shù)為( 。
A.-3B.$-\frac{1}{2}$C.3D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知向量$\overrightarrow a=(\sqrt{3},1)$,$\overrightarrow b=(0,-1)$,$\overrightarrow c=(k,\sqrt{3})$,若($\overrightarrow a-2\overrightarrow b$)與$\overrightarrow c$互相垂直,則k的值為(  )
A.-3B.-1C.1D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.如圖,在四棱錐P-ABCD中,底面ABCD是正方形,PA⊥平面ABCD,AB=1,當直線PD與平面PBC所成角的正弦值最大時,該幾何體的外接球的體積為$\frac{\sqrt{3}π}{2}$.

查看答案和解析>>

同步練習(xí)冊答案