分析 (1)先求出集和A={x|-3≤x≤4},然后m=-3時可以得出集和B,進行并集的運算便可得出A∪B;
(2)可由A∩B=B得出B⊆A,然后討論B是否為空集,對于每種情況,判斷是否滿足題意,并建立關(guān)于m的不等式,解出m的范圍,求并集便可得出實數(shù)m的取值范圍.
解答 解:(1)A={x|-3≤x≤4};
當m=-3時,B={x|-7≤x≤-2}
∴A∪B={x|-7≤x≤4}
(2)由A∩B=B知,B⊆A;
①當2m-1>m+1,即m>2時,B=∅⊆A,合題意;
②當B≠ϕ時,由B⊆A,則有$\left\{\begin{array}{l}{m≤2}\\{2m-1≥-3}\\{m+1≤4}\end{array}\right.$,∴-1≤m≤2
綜上①②,實數(shù)m取值范圍是{m|m≥-1}.
點評 考查描述法表示集和,以及交集、并集的概念及運算,子集的概念,空集的概念.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\sqrt{2}-1$ | B. | $\frac{{\sqrt{2}}}{2}$ | C. | $\frac{{3\sqrt{2}}}{2}$ | D. | $\sqrt{2}+1$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{\sqrt{2}}{4}$ | B. | $\frac{1}{8}$ | C. | $\frac{1}{4}$ | D. | $\frac{\sqrt{2}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | a>b>c | B. | c>b>a | C. | c>a>b | D. | a>c>b |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com