4.在正四棱柱ABCD-A1B1C1D1中,E是BC的中點(diǎn),F(xiàn)是C1D的中點(diǎn),P是棱CC1所在直線上的動(dòng)點(diǎn).則下列四個(gè)命題:
①CD⊥PE
②EF∥平面ABC1
③${V_{P-{A_1}D{D_1}}}={V_{{D_1}-ADE}}$
④不存在過(guò)P的直線與正四棱柱的各個(gè)面都成等角.
其中正確命題的序號(hào)是①③(寫出所有正確命題的序號(hào)).

分析 根據(jù)標(biāo)榜的結(jié)構(gòu)特征,結(jié)合線面垂直的判定與性質(zhì),面面平行的判定與性質(zhì),錐體的體積公式,直線與平面的夾角等知識(shí)點(diǎn),分別判斷4個(gè)結(jié)論的真假,可得答案.

解答 解:在①中:∵正四棱柱ABCD-A1B1C1D1中,E是BC的中點(diǎn),F(xiàn)是C1D的中點(diǎn),P是棱CC1所在直線上的動(dòng)點(diǎn),
∴CD⊥平面ECC1,又PE?平面ECC1,∴CD⊥PE,故①正確;
在②中:EF?平面EC1D,延長(zhǎng)C1E與B1B交于H,連接DH,得DH平行于EF,
DH與平面ABC1相交,故②EF∥平面ABC1不正確;
在③中:${V}_{P-{A}_{1}D{D}_{1}}$=$\frac{1}{6}$${V}_{ABCD-{A}_{1}{B}_{1}{C}_{1}{D}_{1}}$,${V}_{{D}_{1}-ADE}$=$\frac{1}{6}$${V}_{ABCD-{A}_{1}{B}_{1}{C}_{1}{D}_{1}}$,
故③${V_{P-{A_1}D{D_1}}}={V_{{D_1}-ADE}}$正確;
在④中:過(guò)P做一條與以ABCD為底面的正方體的對(duì)角線平行的直線,
則該直線與正四棱柱的各個(gè)面都成等角.故④不正確;
故正確命題的序號(hào)為:①③.
故答案為:①③.

點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是線面垂直的判定與性質(zhì),面面平行的判定與性質(zhì),錐體的體積公式,直線與平面的夾角,是立體幾何知識(shí)的綜合考查,是中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.拋物線$y=\frac{1}{8}{x^2}$的焦點(diǎn)到雙曲線${y^2}-\frac{x^2}{3}=1$的一條漸近線的距離為( 。
A.1B.2C.$\sqrt{3}$D.$2\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.已知函數(shù)f(x)=$\left\{\begin{array}{l}{{e}^{x},x<0}\\{x+m,x≥0}\end{array}\right.$,以下說(shuō)法正確的是( 。
A.?m∈R,函數(shù)f(x)在定義域上單調(diào)遞增B.?m∈R,函數(shù)f(x)存在零點(diǎn)
C.?m∈R,函數(shù)f(x)有最大值D.?m∈R,函數(shù)f(x)沒有最小值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.如圖,AB是圓O的直徑,AC是弦,∠BAC的平分線AD交圓O于點(diǎn)D,DE⊥AC,交AC的延長(zhǎng)線于點(diǎn)E,OE交AD于點(diǎn)F.
(1)求證:DE是圓O的切線;
(2)若∠CAB=60°,⊙O的半徑為2,EC=1,求DE的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.某中學(xué)采用系統(tǒng)抽樣方法,從該校高一年級(jí)全體500名學(xué)生中抽50名學(xué)生做牙齒健康檢查.現(xiàn)將500名學(xué)生從1到500進(jìn)行編號(hào).已知從21~30這10個(gè)數(shù)中取的數(shù)是24,則在第1小組1~10中隨機(jī)抽到的數(shù)是( 。
A.2B.4C.6D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.已知$\overrightarrow{AB}$=(-1,-2),$\overrightarrow{BC}$=(-3,-4),則$\overrightarrow{CA}$=(  )
A.(4,6)B.(-4,-6)C.(2,2)D.(-2,-2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.在一次函數(shù)y=-2x+3中,y隨x的增大而減。ㄌ睢霸龃蟆被颉皽p小”);當(dāng)-1≤x≤3時(shí),y的最小值為-3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.已知實(shí)數(shù)x、y、z滿足x2+y2+z2=4,則(2x-y)2+(2y-z)2+(2z-x)2的最大值是(  )
A.12B.20C.28D.36

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.關(guān)于x的不等式$\frac{2x-3a}{x+2a}≤1(a<0)$的解集是( 。
A.[5a,-2a)B.(-∞,5a]∪(-2a,+∞)C.(-2a,5a]?D.(-∞,5a]

查看答案和解析>>

同步練習(xí)冊(cè)答案