14.設(shè)過點M(-3,-3)的直線l與圓x2+y2+4y-21=0相交于A、B兩點.
(1)若|AB|=4$\sqrt{5}$,求直線l的方程;
(2)若線段AB被點M平分,求直線l的方程.

分析 (1)若|AB|=4$\sqrt{5}$,求出圓心到弦的距離,利用勾股定理,求出k,即可求直線l的方程;
(2)因為kCM=$\frac{-2+3}{0+3}$=$\frac{1}{3}$,所以kAB=-3,即可求直線l的方程.

解答 解:(1)直線方程為y+3=k(x+3),化簡得kx-y-3+3k=0
圓x2+y2+4y-21=0即x2+(y+2)2=25
即圓心坐標為C(0,-2),半徑為r=5,
根據(jù)垂徑定理由垂直得中點,所以圓心到弦的距離即為$\frac{|-1+3k|}{\sqrt{1+{k}^{2}}}$,
直線l被圓x2+y2+4y-21=0所截得的弦長為4$\sqrt{5}$,
所以(2$\sqrt{5}$)2+($\frac{|-1+3k|}{\sqrt{1+{k}^{2}}}$)2=52,解得k=2或k=-$\frac{1}{2}$,
所以直線方程為2x-y+3=0或x+2y+9=0
(2)因為kCM=$\frac{-2+3}{0+3}$=$\frac{1}{3}$,所以kAB=-3,
所以直線l的方程為y+3=-3(x+3),即3x+y+12=0.

點評 本題考查直線與圓的位置關(guān)系,考查直線方程,考查學(xué)生的計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.求以原點為中心、通過兩點(3,4)(2,6)的橢圓方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.設(shè)集合A={y|y=x2-2x+2,x∈R},U=R,B={x|-1<x≤1}
(1)求A∪B,A∩B;
(2)求(∁UA)∩(∁UB),(∁UA)∪(∁UB).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.函數(shù)f(x)=2sin(ωx+φ)(ω>0,$|φ|<\frac{π}{2}$)的部分圖象如圖所示,則f(0)=-$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.設(shè)復(fù)數(shù)z,ω滿足:z=(1+2i)ω,|ω|=1(i為虛數(shù)單位),求|z|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.$\overrightarrow{a}$+$\overrightarrow$+$\overrightarrow{c}$=$\overrightarrow{0}$,$\overrightarrow{a}$•$\overrightarrow$=$\overrightarrow$•$\overrightarrow{c}$=$\overrightarrow{c}$•$\overrightarrow{a}$=-1,則|$\overrightarrow{a}$|=$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.在區(qū)間(0,8)上插入9個等分點,則所分的小區(qū)間長度為$\frac{4}{5}$;第5個小區(qū)間是[$\frac{16}{5}$,$\frac{20}{5}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知圓C的圓心為直線x-y+1=0與x軸的交點,半徑為2.
(1)求圓C的方程;
(2)設(shè)O為原點,點A(3,0),點M為圓C上一點,試探究:當點M在圓C上運動時,$\frac{|MA|}{|MO|}$是否發(fā)生變化,證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.求函數(shù)f(x)=sin2x+$\sqrt{3}$cos2x在區(qū)間[0,π]上的零點之和.

查看答案和解析>>

同步練習(xí)冊答案