8.(1)橢圓的離心率為$\frac{1}{2}$,焦點(diǎn)是(-3,0),(3,0),求該橢圓方程;
(2)雙曲線焦點(diǎn)在x軸上,c=6,且過點(diǎn)A(-5,2),求雙曲線的標(biāo)準(zhǔn)方程.

分析 (1)橢圓的離心率為$\frac{1}{2}$,焦點(diǎn)是(-3,0),(3,0),求出a,c,可得b,即可求該橢圓方程;
(2)設(shè)所求雙曲線的方程為$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1,a>0,b>0,由題意得$\left\{\begin{array}{l}{{a}^{2}+^{2}=36}\\{\frac{25}{{a}^{2}}-\frac{4}{^{2}}=1}\end{array}\right.$,由此能求出雙曲線的標(biāo)準(zhǔn)方程.其離心率.

解答 解:(1)∵橢圓的離心率為$\frac{1}{2}$,焦點(diǎn)是(-3,0),(3,0),
∴$\frac{c}{a}$=$\frac{1}{2}$,c=3,
∴a=6,
∴b2=27,
∴橢圓方程為$\frac{{x}^{2}}{36}+\frac{{y}^{2}}{27}$=1;
(2)由題意,設(shè)所求雙曲線的方程為$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1,a>0,b>0,
由題意得$\left\{\begin{array}{l}{{a}^{2}+^{2}=36}\\{\frac{25}{{a}^{2}}-\frac{4}{^{2}}=1}\end{array}\right.$,
解得a2=20,b2=16,
∴所求的雙曲線的標(biāo)準(zhǔn)方程為$\frac{{x}^{2}}{20}-\frac{{y}^{2}}{16}$=1,

點(diǎn)評(píng) 本題考查橢圓、雙曲線的標(biāo)準(zhǔn)方程的求法,考查待定系數(shù)法,考查學(xué)生的計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.從6名男同學(xué)和4名女同學(xué)中,選出3名男同學(xué)和2名女同學(xué)的擔(dān)任五種不同的職務(wù),不同的分配方案有( 。┓N.
A.${C}_{6}^{3}{C}_{4}^{2}$B.${A}_{6}^{3}{A}_{4}^{2}$C.${C}_{6}^{3}{C}_{4}^{2}{A}_{5}^{5}$D.$({C}_{6}^{3}+{C}_{4}^{2}){A}_{5}^{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.若復(fù)數(shù)$\frac{7+bi}{3+4i}({b∈R})$的實(shí)部與虛部互為相反數(shù),則b=( 。
A.-1B.1C.-7D.7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.設(shè)全集U=R,集合A={x|1<2x<4},B={x|log2x>0},則(∁UA)∩B=( 。
A.[2,+∞)B.(1,2]C.(-∞,0]∪[2,+∞)D.(-∞,0]∪(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知向量$\overrightarrow a=(-5,6)$,$\overrightarrow b=(10,-12)$,則$\overrightarrow a$與$\overrightarrow b$( 。
A.垂直B.不垂直也不平行C.平行且同向D.平行且反向

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.定義在R的奇函數(shù)f(x),當(dāng)x<0時(shí),f(x)=-x2+x,則f(2)等于( 。
A.4B.6C.-4D.-6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.若函數(shù)f(x)=(1-3a)x在R上是減函數(shù),則實(shí)數(shù)a的取值范圍是0<a<$\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知圓C:(x-3)2+(y-4)2=1,點(diǎn)A(-1,0),B(1,0),點(diǎn)P是圓上的動(dòng)點(diǎn),則d=|PA|2+|PB|2的最大值為74,最小值為34.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知公差不為0的等差數(shù)列{an}的首項(xiàng)為1,前n項(xiàng)和為Sn,且數(shù)列{$\frac{{S}_{n}}{{a}_{n}}$}是等差數(shù)列.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)lgbn=$\frac{{a}_{n}}{{3}^{n}}$(n∈N*),問:b1,bk,bm(k,m均為正整數(shù),且1<k<m)能否成等比數(shù)列?若能,求出所有的k和m的值;若不能,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案