20.若函數(shù)f(x)=(1-3a)x在R上是減函數(shù),則實(shí)數(shù)a的取值范圍是0<a<$\frac{1}{3}$.

分析 根據(jù)指數(shù)函數(shù)的單調(diào)性得到0<1-3a<1,即可得到結(jié)論.

解答 解:∵函數(shù)f(x)=(1-3a)x在R上是減函數(shù),
∴0<1-3a<1,得0<a<$\frac{1}{3}$,
故答案為:0<a<$\frac{1}{3}$

點(diǎn)評(píng) 本題主要考查函數(shù)單調(diào)性的應(yīng)用,根據(jù)指數(shù)函數(shù)的單調(diào)性是解決本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.△ABC中,角A,B,C的對(duì)邊分別為a,b,c,且2bcosC+c=2a.
(1)求角B的大小;
(2)若cosA=$\frac{1}{7}$,求$\frac{c}{a}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.下列關(guān)系正確的是(  )
A.0∉NB.0•$\overrightarrow{AB}$=0
C.cos0.75°>cos0.75D.lge>(lge)2>lg$\sqrt{e}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.(1)橢圓的離心率為$\frac{1}{2}$,焦點(diǎn)是(-3,0),(3,0),求該橢圓方程;
(2)雙曲線焦點(diǎn)在x軸上,c=6,且過點(diǎn)A(-5,2),求雙曲線的標(biāo)準(zhǔn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.用數(shù)字0,1,2,3,4,5組成沒有重復(fù)數(shù)字的五位數(shù),其中比40000大的偶數(shù)共有120個(gè).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.下列四個(gè)關(guān)于圓錐曲線的命題:
①已知M(-2,0)、N(2,0),|PM|+|PN|=3,則動(dòng)點(diǎn)P的軌跡是一條線段;
②從雙曲線的一個(gè)焦點(diǎn)到一條漸近線的距離等于它的虛半軸長(zhǎng);
③雙曲線$\frac{x^2}{16}-\frac{y^2}{9}=1$與橢圓$\frac{x^2}{16}+\frac{y^2}{9}=1$有相同的焦點(diǎn);
④關(guān)于x的方程x2-mx+1=0(m>2)的兩根可分別作為橢圓和雙曲線的離心率.
其中正確的命題是②④.(填上你認(rèn)為正確的所有命題序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.記f(x)=|log2(ax)|在x∈[$\frac{1}{2}$,8]時(shí)的最大值為g(a),則g(a)的最小值為( 。
A.$\frac{3}{2}$B.2C.$\frac{5}{2}$D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知定義在R上的函數(shù)f(x)滿足f(x)=2f(2-x)-x2+8x-8,則曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程是( 。
A.2x-y-1=0B.x-2y+1=0C.x+y-2=0D.6x+y-7=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.函數(shù)f(x)=$\frac{\sqrt{1-co{s}^{2}x}}{cosx}$的最小正周期為2π.

查看答案和解析>>

同步練習(xí)冊(cè)答案