10.已知二次函數(shù)f(x)=$\frac{1}{2}$(a-1)x2+(b-4)x+1,其中a>0,b>0.
(1)當(dāng)a=3,b=8時(shí),求不等式f(x)≤0的解集;
(2)若函數(shù)f(x)在區(qū)間[$\frac{1}{2}$,2]上單調(diào)遞減,求ab的最大值.

分析 (1)根據(jù)一元二次不等式的解法解得即可;
(2)需要分類(lèi)討論,根據(jù)二次函數(shù)的性質(zhì)和基本不等式即可求出ab的最大值.

解答 解:(1)當(dāng)a=3,b=8時(shí),f(x)=x2+4x+1,
∵f(x)≤0,
∴x2+4x+1≤0,
解得-2-$\sqrt{3}$≤x≤-2+$\sqrt{3}$,
∴不等式f(x)≤0的解集為(-2-$\sqrt{3}$,-2+$\sqrt{3}$),
(2)f(x)的對(duì)稱(chēng)軸為x=-$\frac{b-4}{a-1}$,函數(shù)f(x)在區(qū)間[$\frac{1}{2}$,2]上單調(diào)遞減,
①當(dāng)a>1時(shí),拋物線的開(kāi)口向上,
由-$\frac{b-4}{a-1}$≥2,得2a+b≤6,
∵2a•b≤$(\frac{2a+b}{2})^{2}$≤9,
∴ab≤$\frac{9}{2}$,
當(dāng)且僅當(dāng)$\left\{\begin{array}{l}{2a=b}\\{2a+b=6}\end{array}\right.$,即a=$\frac{3}{2}$,b=3時(shí)等號(hào)成立,
②當(dāng)a<1時(shí),拋物線的開(kāi)口向上,
由-$\frac{b-4}{a-1}$≤$\frac{1}{2}$,得a+2b≤9,
∵a•2b≤$(\frac{a+2b}{2})^{2}$≤$\frac{81}{4}$,
∴ab≤$\frac{81}{8}$,
當(dāng)且僅當(dāng)a=$\frac{9}{2}$,b=$\frac{9}{4}$時(shí)等號(hào)成立,
∵a=$\frac{9}{2}$>1,故應(yīng)舍去,
由①②得ab的最大值為$\frac{9}{2}$.

點(diǎn)評(píng) 本題考查了二次函數(shù)的性質(zhì)以及基本不等式的應(yīng)用,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.等比數(shù)列{an}滿足a6=a2•a4,且a2為2a1與$\frac{1}{2}{a_3}$的等差中項(xiàng).
(I)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè)${b_n}=\frac{a_n}{{({{a_n}-1})({{a_{n+1}}-1})}}$,Tn為{bn}的前n項(xiàng)和,求使${T_n}>\frac{2015}{2016}$成立時(shí)n的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.已知數(shù)列{an}滿足:${a_1}=1,{a_{n+1}}=\frac{a_n}{{{a_n}+2}}(n∈N*)$,${C_n}=(1+\frac{1}{a_n})(\frac{2}{n+1}-λ)$,若{Cn}是單調(diào)遞減數(shù)列,則實(shí)數(shù)λ的取值范圍是( 。
A.λ$≥\frac{1}{3}$B.λ$>\frac{1}{3}$C.λ$≥\frac{4}{3}$D.λ$>\frac{4}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.已知向量$\overrightarrow{a}$=(2,3),$\overrightarrow$=(-1,2),若m$\overrightarrow{a}$+$\overrightarrow$與$\overrightarrow{a}$-$\overrightarrow$共線,則m的值為(  )
A.-1B.0C.1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知曲線C的參數(shù)方程為$\left\{\begin{array}{l}{x=2+2cosθ}\\{y=2sinθ}\end{array}\right.$,直線l的極坐標(biāo)方程為ρsin(θ+$\frac{π}{4}$)=-2$\sqrt{2}$.
(1)寫(xiě)出曲線C的普通方程和直線l的直角坐標(biāo)方程;
(2)設(shè)點(diǎn)P為曲線C上的動(dòng)點(diǎn),求點(diǎn)P到直線l距離的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.假定某運(yùn)動(dòng)員每次投擲飛鏢正中靶心的概率為0.4,現(xiàn)采用隨機(jī)模擬的方法估計(jì)該運(yùn)動(dòng)員兩次投擲飛鏢兩次都命中靶心的概率:先利用計(jì)算器產(chǎn)生0到9之間取整數(shù)值的隨機(jī)數(shù),指定2,3,5,7表示命中靶心,1,4,6,8,9,0表示未命中靶心,再以每?jī)蓚(gè)隨機(jī)數(shù)為一組,代表兩次的結(jié)果,經(jīng)隨機(jī)模擬產(chǎn)生了20組隨機(jī)數(shù):
93  28  12  45  85  69  68  34  31  25
73  93  02  75  56  48  87  30  11  35
據(jù)此估計(jì),該運(yùn)動(dòng)員兩次投擲飛鏢都正中靶心的概率為( 。
A.0.16B.0.20C.0.35D.0.40

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.若tanα=3tan37°,則$\frac{cos(α-53°)}{sin(α-37°)}$的值是2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.給定兩個(gè)向量$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$,它們的夾角為120°,|$\overrightarrow{{e}_{1}}$|=1,|$\overrightarrow{{e}_{2}}$|=2,若$\overrightarrow{a}$=2$\overrightarrow{{e}_{1}}$+$\overrightarrow{{e}_{2}}$,則|$\overrightarrow{a}$|=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.在平面直角坐標(biāo)系x0y中,動(dòng)點(diǎn)A的坐標(biāo)為(2+$\sqrt{2}$cosα,$\sqrt{2}$sinα-1),其中α∈R.在極坐標(biāo)系(以原點(diǎn)O為極點(diǎn),以x軸非負(fù)半軸為極軸)中,直線C的方程為ρcos(θ-$\frac{π}{4}$)=$\sqrt{2}$a.
(Ⅰ)判斷動(dòng)點(diǎn)A的軌跡的形狀;
(Ⅱ)若直線C與動(dòng)點(diǎn)A的軌跡有且僅有一個(gè)公共點(diǎn),求實(shí)數(shù)a的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案