A. | $9+\frac{π^2}{9}$ | B. | $9-\frac{π^2}{9}$ | C. | $4+\frac{π^2}{4}$ | D. | $4-\frac{π^2}{4}$ |
分析 由三角函數(shù)公式化簡可得f(x)=sin(2x+$\frac{π}{6}$)-$\frac{1}{2}$,結合圖象可得A、B、C的坐標,可得向量的坐標,計算可得.
解答 解:由三角函數(shù)公式化簡可得f(x)=$\sqrt{3}$sinxcosx-sinxsinx
=$\frac{\sqrt{3}}{2}$sin2x-$\frac{1}{2}$(1-cos2x)=$\frac{\sqrt{3}}{2}$sin2x+$\frac{1}{2}$cos2x-$\frac{1}{2}$
=sin(2x+$\frac{π}{6}$)-$\frac{1}{2}$,令2x+$\frac{π}{6}$=$\frac{3π}{2}$可得x=$\frac{2π}{3}$,
可取一個最低點A($\frac{2π}{3}$,-$\frac{3}{2}$),
同理可得B($\frac{π}{6}$,$\frac{1}{2}$),C($\frac{7π}{6}$,$\frac{1}{2}$),
∴$\overrightarrow{AB}$=(-$\frac{π}{2}$,2),$\overrightarrow{AC}$=($\frac{π}{2}$,2),
∴$\overrightarrow{AB}$•$\overrightarrow{AC}$=-$\frac{{π}^{2}}{4}$+4,
故選:D.
點評 本題考查三角函數(shù)恒等變換,涉及圖象的性質和向量的數(shù)量積的運算,屬基礎題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | 9 | B. | 10 | C. | 11 | D. | 12 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\sqrt{3}$ | B. | $\sqrt{5}$ | C. | $\frac{\sqrt{14-2\sqrt{41}}}{2}$ | D. | $\frac{\sqrt{14+2\sqrt{41}}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com