2.如圖所示,AD∥BC∥EF,平面ADFE⊥平面BCFE,AE⊥EF,BE⊥EF,AD=AE=BE=2,EF=3,BC=4,G為BC的中點(diǎn).
(1)求證:BD⊥EG;
(2)求二面角D-BF-C的余弦值.

分析 (1)由已知結(jié)合面面垂直的性質(zhì)得到EB、EF、EA兩兩垂直.以點(diǎn)E為坐標(biāo)原點(diǎn),EB、EF、EA所在直線分別為x、y、z軸建立空間直角坐標(biāo)系,結(jié)合已知求出點(diǎn)的坐標(biāo),得到$\overrightarrow{BD}、\overrightarrow{EG}$的坐標(biāo),由數(shù)量積為0證明BD⊥EG;
(2)求出平面BFC、DBF的法向量,求得兩向量夾角的余弦值,進(jìn)一步求得二面角D-BF-C的余弦值.

解答 (1)證明:∵平面ADFE⊥平面BCFE,AE⊥EF,
∴AE⊥平面BCFE,∴AE⊥BE,又BE⊥EF,
∴EB、EF、EA兩兩垂直.
以點(diǎn)E為坐標(biāo)原點(diǎn),EB、EF、EA所在直線分別為x、y、z軸,建立空間直角坐標(biāo)系如圖所示,
由已知AD=AE=BE=2,EF=3,BC=4,G為BC的中點(diǎn),得:
A(0,0,2),B(2,0,0),C(2,4,0),D(0,2,2),F(xiàn)(0,3,0),G(2,2,0).
∴$\overrightarrow{EG}=(2,2,0),\overrightarrow{BD}=(-2,2,2)$.
∵$\overrightarrow{EG}•\overrightarrow{BD}=-2×2+2×2+2×0=0$,
∴BD⊥EG;
(2)解:由圖可知,平面BFC的一個(gè)法向量為$\overrightarrow{m}=(0,0,1)$.
設(shè)平面DBF的一個(gè)法向量為$\overrightarrow{n}=(x,y,z)$,
由$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{BD}=0}\\{\overrightarrow{n}•\overrightarrow{BF}=0}\end{array}\right.$,得$\left\{\begin{array}{l}{-2x+2y+2z=0}\\{-2x+3y=0}\end{array}\right.$,取y=2,得x=3,z=1.
∴$\overrightarrow{n}=(3,2,1)$.
向量$\overrightarrow{m}$與向量$\overrightarrow{n}$的夾角的余弦值$cosθ=\frac{\overrightarrow{m}•\overrightarrow{n}}{|\overrightarrow{m}||\overrightarrow{n}|}$=$\frac{1}{\sqrt{14}}=\frac{\sqrt{14}}{14}$.
∴二面角D-BF-C的余弦值為-$\frac{\sqrt{14}}{14}$.

點(diǎn)評(píng) 本題考查平面和平面垂直的性質(zhì),訓(xùn)練了利用空間向量證明線線垂直,利用空間向量求二面角的平面角,是中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.點(diǎn)A(sin2015°,cos2015°)位于( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.已知函數(shù)$f(x)=\sqrt{3}sin(π-x)cos(-x)+sin(π+x)cos(\frac{π}{2}-x)$圖象上的一個(gè)最低點(diǎn)為A,離A最近的兩個(gè)最高點(diǎn)分別為B與C,則$\overrightarrow{AB}$•$\overrightarrow{AC}$=(  )
A.$9+\frac{π^2}{9}$B.$9-\frac{π^2}{9}$C.$4+\frac{π^2}{4}$D.$4-\frac{π^2}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.如圖,經(jīng)過圓上的點(diǎn)T的切線和弦AB的延長(zhǎng)線相交于點(diǎn)C,求證:∠ATC=∠TBC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.對(duì)于以下四個(gè)命題:
①若函數(shù)f(x)=logax(a>0,a≠1)在其定義域內(nèi)是減函數(shù),則loga2<0;
②設(shè)函數(shù)f(x)=2x+$\frac{1}{2x}$-1(x<0),則函數(shù)f(x)有最小值1;
③若向量$\overrightarrow a=(1,k)$,$\overrightarrow b=(-2,6)$,$\overrightarrow{a}$∥$\overrightarrow$,則k=-3;
④函數(shù)y=(sinx+cosx)2-1的最小正周期是2π.
其中正確命題的序號(hào)是①③.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.已知橢圓的焦點(diǎn)為F1(0,-1),F(xiàn)2(0,1),且經(jīng)過點(diǎn)M($\frac{7}{4}$,$\frac{3\sqrt{2}}{2}$),則橢圓的方程為( 。
A.$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1B.$\frac{{y}^{2}}{4}$+$\frac{{x}^{2}}{3}$=1C.$\frac{{y}^{2}}{9}$+$\frac{{x}^{2}}{8}$=1D.$\frac{{x}^{2}}{7}$+$\frac{{y}^{2}}{8}$=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.若等軸雙曲線的頂點(diǎn)到漸近線的距離為$\sqrt{2}$,則該雙曲線的焦點(diǎn)到漸近線的距離為( 。
A.$\frac{1}{2}$B.$\frac{\sqrt{2}}{2}$C.$\sqrt{2}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知函數(shù)f(x)=2sin2x+2acosx-2a-1的最大值為$\frac{7}{2}$
(1)求a的值;
(2)設(shè)g(x)=$\frac{f(x)}{cosx}$-kcosx≥0在x∈[0,$\frac{π}{3}$]有解,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.某組有12名學(xué)生,其中男,女生各占一半,把全組學(xué)生分成人數(shù)相等的兩小組,求每小組里男、女生人數(shù)相同的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案