20.若loga2=2,則a等于$\sqrt{2}$.

分析 利用對數(shù)性質(zhì)、運算法則求解.

解答 解:∵loga2=2,
∴$\left\{\begin{array}{l}{a>0}\\{a≠1}\\{{a}^{2}=2}\end{array}\right.$,解得a=$\sqrt{2}$.
故答案為:$\sqrt{2}$.

點評 本題考查實數(shù)值的求法,是基礎(chǔ)題,解題時要認真審題,注意對數(shù)運算法則的合理運用.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

17.△ABC中,角A、B、C所對的邊分別為a、b、c,且bsinA=$\sqrt{3}acosB$.
(1)求角B的大;
(2)若b=3,a+c=6,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.在A、B、C、D、E五個不同城市中,經(jīng)氣象臺測定,明日有兩個城市下雨,則A、B兩市中至少有一個城市下雨的概率為$\frac{7}{10}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左、右焦點為F1,F(xiàn)2,長軸長為8,點P為直線l:x+y=2上任意一點,且|PF1|+|PF2|的最小值為4.
(1)求橢圓C的標準方程;
(2)已知直線l:y=$\frac{1}{2}$x+m與橢圓C交于A,B兩點,已知點Q(2,3),求證:直線AQ、BQ關(guān)于直線x=2對稱.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.一個盒子中裝有4張卡片,每張卡片上寫有1個數(shù)字,數(shù)字分別是1,2,3,4,現(xiàn)從盒子中隨機抽取卡片.
(1)若一次從中隨機抽取3張卡片,求3張卡片上數(shù)字之和大于或等于8的概率;
(2)若隨機抽取1張卡片,放回后再隨機抽取1張卡片,求兩次抽取的卡片中至少一次抽到數(shù)字3的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.設(shè)x∈R,則“-1<x<6”是“2x2-5x-3<0”的( 。
A.充分不必要條件B.必要不充分條件
C.充分必要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.已知cos(x-$\frac{π}{4}$)=$\frac{\sqrt{2}}{10}$,x∈($\frac{π}{2}$,$\frac{3π}{4}$).
(1)求sinx的值;
(2)求cos(2x-$\frac{π}{3}$)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.若關(guān)于x的方程4sin2x-msinx+1=0在(0,π)內(nèi)有兩個不同的實數(shù)解,則實數(shù)m的取值范圍為( 。
A.m>4或m<-4B.4<m<5C.4<m<8D.m>5或m=4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.如圖,已知正三棱柱ABC-A1B1C1的各條棱長都相等,則異面直線AB1和A1C所成的角的余弦值大小為( 。
A.$\frac{1}{4}$B.$-\frac{1}{4}$C.$\frac{1}{2}$D.$-\frac{1}{2}$

查看答案和解析>>

同步練習冊答案