A. | $\frac{1}{4}$ | B. | $-\frac{1}{4}$ | C. | $\frac{1}{2}$ | D. | $-\frac{1}{2}$ |
分析 以A為原點(diǎn),在平面ABC內(nèi)過(guò)A作AC的垂線為x軸,以AC為y軸,以AA1為z軸,建立空間直角坐標(biāo)系,利用向量法能求出異面直線AB1和A1C所成的角的余弦值大。
解答 解:以A為原點(diǎn),在平面ABC內(nèi)過(guò)A作AC的垂線為x軸,以AC為y軸,以AA1為z軸,建立空間直角坐標(biāo)系,
設(shè)正三棱柱ABC-A1B1C1的各條棱長(zhǎng)為2,
則A(0,0,0),B1($\sqrt{3}$,1,2),A1(0,0,2),C(0,2,0),
$\overrightarrow{A{B}_{1}}$=($\sqrt{3},1,2$),$\overrightarrow{{A}_{1}C}$=(0,2,-2),
設(shè)異面直線AB1和A1C所成的角的余弦值為θ,
則cosθ=$\frac{|\overrightarrow{A{B}_{1}}•\overrightarrow{{A}_{1}C}|}{|\overrightarrow{A{B}_{1}}|•|\overrightarrow{{A}_{1}C}|}$=$\frac{|-2|}{\sqrt{8}•\sqrt{8}}$=$\frac{1}{4}$.
∴異面直線AB1和A1C所成的角的余弦值大小為$\frac{1}{4}$.
故選:A.
點(diǎn)評(píng) 本題考查異面直線所成角的余弦值的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意空間思維能力的培養(yǎng).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | -1 | B. | 0 | C. | $\frac{3}{2}$ | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com