11.已知雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的一條漸近線平行于直線l:y=2x+10,雙曲線的一個(gè)焦點(diǎn)在直線l上,則雙曲線的方程為( 。
A.$\frac{{3{x^2}}}{25}-\frac{{3{y^2}}}{100}=1$B.$\frac{{3{x^2}}}{100}-\frac{{3{y^2}}}{25}=1$
C.$\frac{x^2}{20}-\frac{y^2}{5}=1$D.$\frac{x^2}{5}-\frac{y^2}{20}=1$

分析 先求出焦點(diǎn)坐標(biāo),利用雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的一條漸近線平行于直線l:y=2x+10,可得$\frac{a}$=2,結(jié)合c2=a2+b2,求出a,b,即可求出雙曲線的方程.

解答 解:∵雙曲線的一個(gè)焦點(diǎn)在直線l上,
令y=0,可得x=-5,即焦點(diǎn)坐標(biāo)為(-5,0),∴c=5,
∵雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的一條漸近線平行于直線l:y=2x+10,
∴$\frac{a}$=2,
∵c2=a2+b2,
∴a2=5,b2=20,
∴雙曲線的方程為$\frac{{x}^{2}}{5}-\frac{{y}^{2}}{20}$=1.
故選:D.

點(diǎn)評 本題考查雙曲線的方程與性質(zhì),考查學(xué)生的計(jì)算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.“a=1”是“直線x-ay-2=0與直線2ax-(a-3)y+1=0垂直”的(  )
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.“a=$\sqrt{2}$”是“直線y=x與圓(x-a)2+y2=1相切”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.下列命題中
①若f′(x0)=0,則函數(shù)y=f(x)在x=x0取得極值;
②直線5x-2y+1=0與函數(shù)f(x)=sin(2x+$\frac{π}{3}$)的圖象不相切;
③若z∈C(C為復(fù)數(shù)集),且|z+2-2i|=1,則|z-2-2i|的最小值是3;
④定積分${∫}_{-4}^{0}$$\sqrt{16-{x}^{2}}$dx=4π.
正確的有( 。
A.①④B.③④C.②④D.②③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知點(diǎn)A(-1,1),B(-4,5),若$\overrightarrow{BC}=3\overrightarrow{BA}$,則點(diǎn)C的坐標(biāo)為( 。
A.(-10,13)B.(9,-12)C.(-5,7)D.(5,-7)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.焦點(diǎn)在x軸上的橢圓C的一個(gè)頂點(diǎn)與拋物線E:x2=4$\sqrt{3}$y的焦點(diǎn)重合,且離心率e=$\frac{1}{2}$,直線l經(jīng)過橢圓C的右焦點(diǎn)與橢圓C交于M,N兩點(diǎn).
(1)求橢圓C的方程;
(2)若$\overrightarrow{OM}$•$\overrightarrow{ON}$=-2,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.i為虛數(shù)單位,則$|{\frac{1+i}{i}}|$等于( 。
A.1-iB.1+iC.$\sqrt{2}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.下列函數(shù)中,既是奇函數(shù)又在區(qū)間(0,+∞)上單調(diào)遞增的函數(shù)是(  )
A.y=x+x-1B.y=x3+xC.y=2x+log2xD.$y={x^{\frac{1}{2}}}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知橢圓C的中心在原點(diǎn),左焦點(diǎn)F1,右焦點(diǎn)F2均在x軸上,A為橢圓的右頂點(diǎn),B為橢圓短軸的端點(diǎn),P是橢圓上一點(diǎn),且PF1⊥x軸,PF2∥AB,則此橢圓的離心率等于( 。
A.$\frac{1}{2}$B.$\frac{{\sqrt{2}}}{2}$C.$\frac{1}{3}$D.$\frac{{\sqrt{5}}}{5}$

查看答案和解析>>

同步練習(xí)冊答案