分析 由已知橢圓的方程求出橢圓的焦距和長(zhǎng)軸長(zhǎng),由橢圓定義求出|PF2|,可知△PF1F2是以∠F1F2P為直角的直角三角形,則答案可求.
解答 解:由橢圓$\frac{{x}^{2}}{64}$+$\frac{{y}^{2}}{48}$=1,得a=8,b2=48,c2=a2-b2=64-48=16,∴c=4,
又|PF1|=10,∴|PF2|=2a-|PF1|=16-10=6,
則$|P{F}_{2}{|}^{2}+|{F}_{1}{F}_{2}{|}^{2}=|P{F}_{1}{|}^{2}$,
∴△PF1F2是以∠F1F2P為直角的直角三角形,
則S${\;}_{△P{F}_{1}{F}_{2}}$=$\frac{1}{2}|{F}_{1}{F}_{2}||P{F}_{2}|=\frac{1}{2}×8×6=24$.
故答案為:24.
點(diǎn)評(píng) 本題考查橢圓的簡(jiǎn)單性質(zhì),考查焦點(diǎn)三角形面積的求法,是中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 0 | B. | -1 | C. | -2 | D. | 3 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com