16.設(shè)$\sqrt{2}a+$1,a,a-1為鈍角三角形的三邊,則a的取值范圍為(2+$\sqrt{2}$,+∞).

分析 由題意推出三角形的最大邊,列出滿足鈍角三角形的關(guān)系式 $\left\{\begin{array}{l}{a+a-1>\sqrt{2}a+1}\\{{a}^{2}+(a-1)^{2}<(\sqrt{2}a+1)^{2}}\end{array}\right.$,解出a的范圍即可.

解答 解:∵鈍角三角形的三邊$\sqrt{2}a+$1,a,a-1,$\sqrt{2}a+$1為最大邊,
則滿足$\left\{\begin{array}{l}{a+a-1>\sqrt{2}a+1}\\{{a}^{2}+(a-1)^{2}<(\sqrt{2}a+1)^{2}}\end{array}\right.$,解得:a>$\frac{2}{2-\sqrt{2}}$=2+$\sqrt{2}$,
故答案為:(2+$\sqrt{2}$,+∞).

點(diǎn)評 此題考查了余弦定理,三角形的邊角關(guān)系,以及不等式的解法,關(guān)鍵是掌握三角形任意兩邊之和大于第三邊,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.過拋物線x2=2py(p>0)的焦點(diǎn)F作傾斜角為30°的直線,與拋物線分別交于A,B兩點(diǎn)(點(diǎn)A在y軸左側(cè)),則$\frac{|FB|}{|AF|}$=3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.求函數(shù)y=$\frac{1}{x}$過點(diǎn)(2,0)的切線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.若${A}_{n-2}^{2}$+n>2,求n的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.在平面直角坐標(biāo)系xOy中,設(shè)點(diǎn)P(x1,y1)、Q(x2,y2),定義:d(P,Q)=|x1-x2|+|y1-y2|. 已知點(diǎn)B(1,0),點(diǎn)M為函數(shù)y=ex上的動點(diǎn),則使d(B,M)取最小值時點(diǎn)M的坐標(biāo)是(0,1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.求下列函數(shù)的導(dǎo)數(shù):
(1)f(x)=(ax+b)n;
(2)f(x)=xsin2x-$\frac{2}{cosx}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.在△ABC中,角A、B、C所對的邊分別為a、b、c,且滿足2acosC-(2b-c)=0.
(1)求角A;
(2)若a=$\sqrt{3}$,求△ABC周長的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知一物體在共點(diǎn)力$\overrightarrow{{F}_{1}}$=$\overrightarrow{a}$lg2+$\overrightarrow$lg2,$\overrightarrow{{F}_{2}}$=$\overrightarrow{a}$lg5+$\overrightarrow$lg2的作用下產(chǎn)生位移$\overrightarrow{s}$=2$\overrightarrow{a}$lg5+$\overrightarrow$.其中$\overrightarrow{a}$,$\overrightarrow$為單位向量,且$\overrightarrow{a}$⊥$\overrightarrow$,則共點(diǎn)力對物體做的功W為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.某幾何體的三視圖如圖所示,其中俯視圖與側(cè)視圖是半徑均為$\sqrt{2}$的圓,則該幾何體的表面積是( 。
A.14πB.12πC.10πD.

查看答案和解析>>

同步練習(xí)冊答案