13.某幾何體的三視圖如圖所示,其中俯視圖與側(cè)視圖是半徑均為$\sqrt{2}$的圓,則該幾何體的表面積是(  )
A.14πB.12πC.10πD.

分析 幾何體是球體切去$\frac{1}{4}$后余下的部分,球的半徑為$\sqrt{2}$,代入球的表面積公式可得答案.

解答 解:由三視圖知:幾何體是球體切去$\frac{1}{4}$后余下的部分,
球的半徑為$\sqrt{2}$,
∴幾何體的表面積S=(1-$\frac{1}{4}$)×4π×($\sqrt{2}$)2+π×($\sqrt{2}$)2=8π.
故選:D.

點評 本題考查了由三視圖求幾何體表面積的應(yīng)用問題,解答本題的關(guān)鍵是得到該幾何體的形狀,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.設(shè)$\sqrt{2}a+$1,a,a-1為鈍角三角形的三邊,則a的取值范圍為(2+$\sqrt{2}$,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.高為4的直三棱柱被削去一部分后得到一個幾何體,它的直觀圖和三視圖中的側(cè)視圖、俯視圖如圖所示,則該幾何體的體積是原直三棱柱的體積的( 。
A.$\frac{3}{4}$B.$\frac{1}{4}$C.$\frac{1}{2}$D.$\frac{3}{8}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知直線l過定點(0,4),且與拋物線x2=4y相交于點A,B,點O為坐標(biāo)原點.
(1)求證:OA⊥OB;
(2)若△OAB的面積為$12\sqrt{2}$,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.橢圓$\frac{{x}^{2}}{{a}^{2}}$$+\frac{{y}^{2}}{^{2}}$=1(a>b>0)的右焦點F,定點A($\frac{5}{3}$a,0),在橢圓上存在點P滿足線段AP的垂直平分線過點F,則橢圓離心率的取值范圍是[$\frac{1}{3}$,1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.過點(2,$\sqrt{2}$)、($\sqrt{2}$,-$\sqrt{3}$)的橢圓的標(biāo)準(zhǔn)方程為$\frac{{x}^{2}}{8}$+$\frac{{y}^{2}}{4}$=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.“牟合方蓋”是我國古代數(shù)學(xué)家劉徽在研究球的體積的過程中構(gòu)造的一個和諧優(yōu)美的幾何體.它由完全相同的四個曲面構(gòu)成,相對的兩個曲面在同一個圓柱的側(cè)面上,好似兩個扣合(牟合)在一起的方形傘(方蓋).其直觀圖如圖,圖中四邊形是為體現(xiàn)其直觀性所作的輔助線.當(dāng)其主視圖和側(cè)視圖完全相同時,它的俯視圖可能是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.如圖,在直三棱柱ABC-A1B1C1中,AB=AC=5,BB1=BC=6,D,E分別是AA1和B1C的中點.
(1)求證:DE⊥BC;
(2)求三棱錐E-BCD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知一個幾何的三視圖如圖所示,圖中小正方形的邊長為1,則該幾何體的體積為(  )
A.$\frac{10}{3}$B.4C.6D.10

查看答案和解析>>

同步練習(xí)冊答案