7.求函數(shù)y=$\frac{1}{x}$過(guò)點(diǎn)(2,0)的切線方程.

分析 求過(guò)點(diǎn)的切線方程一般采取先設(shè)切點(diǎn)坐標(biāo),然后進(jìn)行求解.本題先設(shè)出切點(diǎn)坐標(biāo),然后求出切線方程,將點(diǎn)P的坐標(biāo)代入即可求出切點(diǎn)坐標(biāo),最后利用代入法求出切線方程即可.

解答 解:設(shè)切點(diǎn)坐標(biāo)為(x0,$\frac{1}{{x}_{0}}$)
由于y'|x=x0=-$\frac{1}{{{x}_{0}}^{2}}$,故切線方程為y-$\frac{1}{{x}_{0}}$=-$\frac{1}{{{x}_{0}}^{2}}$(x-x0),
∵y=$\frac{1}{x}$過(guò)點(diǎn)(2,0),
∴0-$\frac{1}{{x}_{0}}$=-$\frac{1}{{{x}_{0}}^{2}}$(2-x0),
解得x0=1,
故切點(diǎn)坐標(biāo)為(1,1),
∴切線方程為:y-1=-(x-1),
即為x+y-2=0.

點(diǎn)評(píng) 本題主要考查了利用導(dǎo)數(shù)研究曲線上某點(diǎn)切線方程,考查運(yùn)算求解能力、推理能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.已知集合A={-1,1},B={x|x∈R,1≤2x≤4},則A∩B等于( 。
A.{0,1}B.{-1,1}C.{1}D.{-1,0,1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.函數(shù)y=sin(x-$\frac{π}{3}$)的最小正周期為2π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.如圖,在Rt△ABC中,AB=4,AC=3,∠A=90°,$\overrightarrow{AP}$=m$\overrightarrow{PB}$,$\overrightarrow{AQ}$=n$\overrightarrow{QC}$,m,n>0,且滿(mǎn)足$\frac{1}{m}$+$\frac{1}{n}$=$\frac{1}{2}$,M是BC的中點(diǎn),對(duì)任意的λ∈R,|λ•$\overrightarrow{QP}$+$\overrightarrow{QM}$|的最小值記為f(m),則對(duì)任意m>0,f(m)的最大值為$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.若tanα+tanβ-tanαtanβ+1=0,α,β∈($\frac{π}{2},π$),則α+β=$\frac{7π}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.某商店每天以每瓶5元的價(jià)格從奶廠購(gòu)進(jìn)若干瓶24小時(shí)新鮮牛奶,然后以每瓶8元的價(jià)格出售,如果當(dāng)天該牛奶賣(mài)不完,則剩下的牛奶就不再出售,由奶廠以每瓶2元的價(jià)格回收處理.
(1)若商場(chǎng)一天購(gòu)進(jìn)20瓶牛奶,求當(dāng)天的利潤(rùn)y(單位:元)關(guān)于當(dāng)天需求量n(單位:瓶,n∈N)的函數(shù)解析式;(2)商店記錄了50天該牛奶的日需求量(單位:瓶),整理得下表:
日需求量n(瓶)17181920212223
頻數(shù)558121064
假設(shè)商店一天購(gòu)進(jìn)20瓶牛奶,以50天記錄的各需求量的頻率作為各需求量發(fā)生概率,求當(dāng)天利潤(rùn)低于60元的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.如圖,已知扇形OAB的面積是4cm2,它的周長(zhǎng)是8cm,求扇形的圓心角及弦AB的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.設(shè)$\sqrt{2}a+$1,a,a-1為鈍角三角形的三邊,則a的取值范圍為(2+$\sqrt{2}$,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.高為4的直三棱柱被削去一部分后得到一個(gè)幾何體,它的直觀圖和三視圖中的側(cè)視圖、俯視圖如圖所示,則該幾何體的體積是原直三棱柱的體積的( 。
A.$\frac{3}{4}$B.$\frac{1}{4}$C.$\frac{1}{2}$D.$\frac{3}{8}$

查看答案和解析>>

同步練習(xí)冊(cè)答案